Question #98984
Differentiate from the first principle the cube root of x plus cube root of x.
1
Expert's answer
2019-11-27T10:27:09-0500

Given question is to differentiate x1/3+x1/3=2x1/3x^{1/3}+x^{1/3} =2x^{1/3}

 Using the first principle

Suppose f(x)=x1/3f(x)= x^{1/3}, then we need to evaluate

limh0f(x+h)f(x)hlim_{h\to0} \frac{f(x+h)-f(x)}{h}

Putting the value of f(x) we get,

limh0(x+h)1/3x1/3hlim_{h\to0} \frac{(x+h)^{1/3}-x^{1/3}}{h}

Multiplying top and bottom by

(x+h)2/3+x1/3(x+h)1/3+x2/3(x+h)^{2/3}+ x^{1/3}(x+h)^{1/3}+x^{2/3}

Now combine the like terms after multiplying numerator and denominator, many of them will cancel out, we get

limh0x+hxh((x+h)2/3+(x+h)1/3x1/3+x2/3)lim_{h\to0} \frac{x+h-x}{h((x+h)^{2/3}+(x+h)^{1/3}x^{1/3}+x^{2/3})}

Now, cancel x's out on the top:

limh0hh((x+h)2/3+(x+h)1/3x1/3+x2/3)lim_{h\to0}\frac{h}{h((x+h)^{2/3}+(x+h)^{1/3}x^{1/3}+x^{2/3})}

limh01(x+h)2/3+(x+h)1/3x1/3+x2/3lim_{h\to0} \frac{1}{(x+h)^{2/3}+(x+h)^{1/3}x^{1/3}+x^{2/3}}

Now, take the limit, we will get

1x2/3+x2/3+x2/3=13x2/3\frac{1}{x^{2/3}+x^{2/3}+x^{2/3}} =\frac{1}{3x^{2/3}}

Thus, the derivative of f(x)=x1/3f(x) = x^{1/3} is f(x)=13x2/3f\prime(x)=\frac{1}{3x^{2/3}}

So, the derivative of 2x1/32x^{1/3} will be equal to 2f(x)=23x2/32f\prime(x)=\frac{2}{3x^{2/3}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS