The parameterized curve is given by the formulas:
x ( t ) = e t c o s ( t ) ; y ( t ) = e t ; z ( t ) = e t s i n ( t ) x(t)=e^t cos(t); y(t)=e^t; z(t)=e^t sin(t) x ( t ) = e t cos ( t ) ; y ( t ) = e t ; z ( t ) = e t s in ( t )
The formula for calculating the length of the curve given parametrically is as follows:
L = ∫ ( x ′ ) 2 + ( y ′ ) 2 + ( z ′ ) 2 d t L=\int{\sqrt{(x^{'})^2+(y^{'})^2+(z^{'})^2} dt} L = ∫ ( x ′ ) 2 + ( y ′ ) 2 + ( z ′ ) 2 d t
Let's calculate and simplify the integrand function: x ′ = e t ( c o s ( t ) − s i n ( t ) ) ; y ′ = e t ; z ′ = e t ( s i n ( t ) + c o s ( t ) ) x^{'}=e^t (cos(t) - sin(t)); y^{'}=e^t; z^{'}=e^t (sin(t)+cos(t)) x ′ = e t ( cos ( t ) − s in ( t )) ; y ′ = e t ; z ′ = e t ( s in ( t ) + cos ( t ))
( x ′ ) 2 + ( y ′ ) 2 + ( z ′ ) 2 = e t ( c o s t − s i n t ) 2 + 1 + ( s i n t + c o s t ) 2 = e t 3 \sqrt{(x^{'})^2+(y^{'})^2+(z^{'})^2}=e^t \sqrt{(cost-sint)^2+1+(sint+cost)^2}=e^t \sqrt{3} ( x ′ ) 2 + ( y ′ ) 2 + ( z ′ ) 2 = e t ( cos t − s in t ) 2 + 1 + ( s in t + cos t ) 2 = e t 3
After that, the integration is carried out easily
L = ∫ 0 2 π 3 e t d t = 3 ( e 2 π − 1 ) L=\int^{2\pi}_0 \sqrt{3} e^t dt=\sqrt{3} (e^{2\pi}-1) L = ∫ 0 2 π 3 e t d t = 3 ( e 2 π − 1 )
Answer: The arc length is 3 ( e 2 π − 1 ) \sqrt{3} (e^{2\pi}-1) 3 ( e 2 π − 1 )
Comments