A) ∫3t2+2e3t+1t+2cos3t dt=t3+23e3t+ln∣t∣+23sin3t+C\int 3t^2 + 2e^{3t} + \cfrac{1}{t} + 2\cos3t\,dt = t^3 + \cfrac{2}{3}e^{3t} + \ln|t| + \cfrac{2}{3}\sin3t + C∫3t2+2e3t+t1+2cos3tdt=t3+32e3t+ln∣t∣+32sin3t+C
B)
∫123t2+2e3t+1t+2cos3t dt=[t3+23e3t+ln t+23sin3t]12=\int_1^2 3t^2 + 2e^{3t} + \cfrac{1}{t} + 2\cos3t\,dt = \Big[t^3 + \cfrac{2}{3}e^{3t} + \ln\,t + \cfrac{2}{3}\sin3t\Big]_1^2 =∫123t2+2e3t+t1+2cos3tdt=[t3+32e3t+lnt+32sin3t]12=
23−13+23(e3∗2−e3∗1)+ln2−ln1+23(sin(3∗2)−sin(3∗1))=2^3 - 1^3 + \cfrac{2}{3}(e^{3*2}-e^{3*1}) + ln2-ln1 +\cfrac{2}{3}(\sin(3*2) - \sin(3*1)) =23−13+32(e3∗2−e3∗1)+ln2−ln1+32(sin(3∗2)−sin(3∗1))=
7+23(e6−e3+sin6−sin3)+ln2≈262.977 + \cfrac{2}{3}(e^6 - e^3+\sin6 - \sin3) +\ln2 \approx 262.977+32(e6−e3+sin6−sin3)+ln2≈262.97
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments