Question #99230
Questions: A) find the indefinite integral of the function y = 3t^2 + 2e^3t + 1/t + 2cos3t?
B) calculate the definite integral: (this is an integral operator, with a 1 at the bottom and 2 at the top of the integral operator) 1int2 3t^2 + 2e^3t + 1/t + 2cos3t dt ?
1
Expert's answer
2019-11-28T10:10:41-0500

A) 3t2+2e3t+1t+2cos3tdt=t3+23e3t+lnt+23sin3t+C\int 3t^2 + 2e^{3t} + \cfrac{1}{t} + 2\cos3t\,dt = t^3 + \cfrac{2}{3}e^{3t} + \ln|t| + \cfrac{2}{3}\sin3t + C


B)

123t2+2e3t+1t+2cos3tdt=[t3+23e3t+lnt+23sin3t]12=\int_1^2 3t^2 + 2e^{3t} + \cfrac{1}{t} + 2\cos3t\,dt = \Big[t^3 + \cfrac{2}{3}e^{3t} + \ln\,t + \cfrac{2}{3}\sin3t\Big]_1^2 =


2313+23(e32e31)+ln2ln1+23(sin(32)sin(31))=2^3 - 1^3 + \cfrac{2}{3}(e^{3*2}-e^{3*1}) + ln2-ln1 +\cfrac{2}{3}(\sin(3*2) - \sin(3*1)) =


7+23(e6e3+sin6sin3)+ln2262.977 + \cfrac{2}{3}(e^6 - e^3+\sin6 - \sin3) +\ln2 \approx 262.97


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS