Question #99241
A complex function can be modified by the equation: y = cos(x^3) 3x^2
Find the indefinite integral of the function ( ∫ cos(x^3)3x^2 dx) using a substitution method?
1
Expert's answer
2019-11-26T09:47:10-0500

Indefinite Integral of a function


We need to find the Indefinite Integration of a function using a Substitution method.


Solution:


Given,


cos(x3) 3x2 dx\int cos (x^3 ) \space 3x^2 \space dx

Let x3=t then d(x3)=dtLet \space x^3 = t \space\\ then \space d (x^3 ) = dt

(since , d (xn ) = n . x (n - 1) dx)

3×x2dx=dt3 \times x^2 dx = dt

Plug all these in the given Integral, then we get


cos(x3) 3x2 dx=cost dt\int cos (x^3 ) \space 3x^2 \space dx = \int cos t \space dt


=cost dt=sint+C= \int cos t \space dt = sint + C

re-plug the substitution,




cos(x3) 3x2 dx=sin t+C=sin x3+C\int cos (x^3 ) \space 3x^2 \space dx = sin \space t + C = sin \space x^3 + C

Answer:

cos(x3) 3x2 dx=sin x3+C\int cos (x^3 ) \space 3x^2 \space dx = sin \space x^3 + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
25.11.19, 00:50

Please kindly wait for a solution.

Bob
24.11.19, 18:50

Did you find the answer out

LATEST TUTORIALS
APPROVED BY CLIENTS