Calculus
We need to find the Integration by parts.
Solution:
We know the formula of Integration by Parts
∫f(x) g(x) dx=f(x) ∫g(x)dx−∫f′(x)(∫g(x)dx) dx
1).
∫5sin−1xdx = 5 ∫sin−1x×1 dx
Here, f(x) = sin−1x and g(x) = 1 ( By Using ILATE)
∫5sin−1xdx = 5 [ sin−1x∫1dx−∫d(sin−1x)(∫1dx)dx ]
=5[xsin−1x−∫1−x21×xdx]
=5[xsin−1x−21∫1−x22xdx]
=5[xsin−1x+21∫t2−1dt]+c
Here t=1−x2dt=−2xdx
∫5sin−1xdx =
5[xsin−1x+212−1+1t2−1+1]+c
=5[xsin−1x+t21]+c=5[xsin−1x+1−x2]+c 2).
∫2lnx=2∫lnx×1 dx
Using ILATE , let f(x) = ln x and g(x) = 1
∫2lnx=2[lnx∫1dx−∫f′(x)(∫g(x)dx)dx]
=2[x lnx−∫x1×xdx]+c
=2[x lnx−x]+c
Comments