Calculus
We need to find the Integration by parts.
Solution:
We know the formula of Integration by Parts
"\\int f(x) \\space g(x) \\space dx = f(x) \\space \\int g(x) dx - \\int f'(x) (\\int g(x) dx) \\space dx"
1).
"\\int 5 sin^{-1} x dx" = 5 "\\int sin ^{-1} x \\times 1 \\space dx"
Here, f(x) = "sin^{-1} x" and g(x) = 1 ( By Using ILATE)
"\\int 5 sin^{-1} x dx" = 5 [ "sin^{-1} x \\int 1 dx - \\int d(sin^{-1} x) (\\int 1 dx) dx" ]
"= 5 [ x sin^{-1} x - \\int \\frac {1}{\\sqrt {1-x^2}}\\times x dx ]"
Here "t = 1 - x^2 \\\\\ndt = - 2x dx"
"\\int 5 sin^{-1} x dx" =
"5 [ x sin^{-1} x + \\frac {1}{2} \\frac {t^{\\frac {-1}{2} + 1}}{\\frac {-1}{2}+1}] + c"
"= 5 [ x sin^{-1} x + t^{ \\frac {1}{2}}] + c = 5 [ x sin^{-1} x + \\sqrt {1-x^2}] +c"
2).
"\\int 2 ln x = 2 \\int ln x \\times 1 \\space dx"
Using ILATE , let f(x) = ln x and g(x) = 1
"= 2 [ x \\space ln x - \\int \\frac {1}{x} \\times x dx ] + c"
"= 2 [ x \\space ln x - x ] + c"
Comments
Leave a comment