Question #100020
Integration by parts

1. Integral of 5 sin^-1 (x) dx

2. Integral of 2 lnx dx
1
Expert's answer
2019-12-11T10:35:29-0500

Calculus

We need to find the Integration by parts.


Solution:


We know the formula of Integration by Parts


f(x) g(x) dx=f(x) g(x)dxf(x)(g(x)dx) dx\int f(x) \space g(x) \space dx = f(x) \space \int g(x) dx - \int f'(x) (\int g(x) dx) \space dx


1).


5sin1xdx\int 5 sin^{-1} x dx = 5 sin1x×1 dx\int sin ^{-1} x \times 1 \space dx


Here, f(x) = sin1xsin^{-1} x and g(x) = 1 ( By Using ILATE)


5sin1xdx\int 5 sin^{-1} x dx = 5 [ sin1x1dxd(sin1x)(1dx)dxsin^{-1} x \int 1 dx - \int d(sin^{-1} x) (\int 1 dx) dx ]


=5[xsin1x11x2×xdx]= 5 [ x sin^{-1} x - \int \frac {1}{\sqrt {1-x^2}}\times x dx ]


=5[xsin1x122x1x2dx]= 5 [x sin^{-1} x - \frac {1}{2} \int \frac {2x}{\sqrt {1-x^2}} dx]


=5[xsin1x+12t12dt]+c= 5 [ x sin^{-1} x + \frac {1}{2} \int t^ {\frac {-1}{2}} dt] + c

Here t=1x2dt=2xdxt = 1 - x^2 \\ dt = - 2x dx

5sin1xdx\int 5 sin^{-1} x dx =

5[xsin1x+12t12+112+1]+c5 [ x sin^{-1} x + \frac {1}{2} \frac {t^{\frac {-1}{2} + 1}}{\frac {-1}{2}+1}] + c

=5[xsin1x+t12]+c=5[xsin1x+1x2]+c= 5 [ x sin^{-1} x + t^{ \frac {1}{2}}] + c = 5 [ x sin^{-1} x + \sqrt {1-x^2}] +c

2).


2lnx=2lnx×1 dx\int 2 ln x = 2 \int ln x \times 1 \space dx


Using ILATE , let f(x) = ln x and g(x) = 1



2lnx=2[lnx1dxf(x)(g(x)dx)dx]\int 2 ln x = 2 [ln x \int 1 dx- \int f' (x) (\int g(x) dx )dx]

=2[x lnx1x×xdx]+c= 2 [ x \space ln x - \int \frac {1}{x} \times x dx ] + c

=2[x lnxx]+c= 2 [ x \space ln x - x ] + c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS