Calculus
We need to find the Integration by parts.
Solution:
We know the formula of Integration by Parts
∫ f ( x ) g ( x ) d x = f ( x ) ∫ g ( x ) d x − ∫ f ′ ( x ) ( ∫ g ( x ) d x ) d x \int f(x) \space g(x) \space dx = f(x) \space \int g(x) dx - \int f'(x) (\int g(x) dx) \space dx ∫ f ( x ) g ( x ) d x = f ( x ) ∫ g ( x ) d x − ∫ f ′ ( x ) ( ∫ g ( x ) d x ) d x
1).
∫ 5 s i n − 1 x d x \int 5 sin^{-1} x dx ∫ 5 s i n − 1 x d x = 5 ∫ s i n − 1 x × 1 d x \int sin ^{-1} x \times 1 \space dx ∫ s i n − 1 x × 1 d x
Here, f(x) = s i n − 1 x sin^{-1} x s i n − 1 x and g(x) = 1 ( By Using ILATE)
∫ 5 s i n − 1 x d x \int 5 sin^{-1} x dx ∫ 5 s i n − 1 x d x = 5 [ s i n − 1 x ∫ 1 d x − ∫ d ( s i n − 1 x ) ( ∫ 1 d x ) d x sin^{-1} x \int 1 dx - \int d(sin^{-1} x) (\int 1 dx) dx s i n − 1 x ∫ 1 d x − ∫ d ( s i n − 1 x ) ( ∫ 1 d x ) d x ]
= 5 [ x s i n − 1 x − ∫ 1 1 − x 2 × x d x ] = 5 [ x sin^{-1} x - \int \frac {1}{\sqrt {1-x^2}}\times x dx ] = 5 [ x s i n − 1 x − ∫ 1 − x 2 1 × x d x ]
= 5 [ x s i n − 1 x − 1 2 ∫ 2 x 1 − x 2 d x ] = 5 [x sin^{-1} x - \frac {1}{2} \int \frac {2x}{\sqrt {1-x^2}} dx] = 5 [ x s i n − 1 x − 2 1 ∫ 1 − x 2 2 x d x ]
= 5 [ x s i n − 1 x + 1 2 ∫ t − 1 2 d t ] + c = 5 [ x sin^{-1} x + \frac {1}{2} \int t^ {\frac {-1}{2}} dt] + c = 5 [ x s i n − 1 x + 2 1 ∫ t 2 − 1 d t ] + c
Here t = 1 − x 2 d t = − 2 x d x t = 1 - x^2 \\
dt = - 2x dx t = 1 − x 2 d t = − 2 x d x
∫ 5 s i n − 1 x d x \int 5 sin^{-1} x dx ∫ 5 s i n − 1 x d x =
5 [ x s i n − 1 x + 1 2 t − 1 2 + 1 − 1 2 + 1 ] + c 5 [ x sin^{-1} x + \frac {1}{2} \frac {t^{\frac {-1}{2} + 1}}{\frac {-1}{2}+1}] + c 5 [ x s i n − 1 x + 2 1 2 − 1 + 1 t 2 − 1 + 1 ] + c
= 5 [ x s i n − 1 x + t 1 2 ] + c = 5 [ x s i n − 1 x + 1 − x 2 ] + c = 5 [ x sin^{-1} x + t^{ \frac {1}{2}}] + c = 5 [ x sin^{-1} x + \sqrt {1-x^2}] +c = 5 [ x s i n − 1 x + t 2 1 ] + c = 5 [ x s i n − 1 x + 1 − x 2 ] + c 2).
∫ 2 l n x = 2 ∫ l n x × 1 d x \int 2 ln x = 2 \int ln x \times 1 \space dx ∫ 2 l n x = 2 ∫ l n x × 1 d x
Using ILATE , let f(x) = ln x and g(x) = 1
∫ 2 l n x = 2 [ l n x ∫ 1 d x − ∫ f ′ ( x ) ( ∫ g ( x ) d x ) d x ] \int 2 ln x = 2 [ln x \int 1 dx- \int f' (x) (\int g(x) dx )dx] ∫ 2 l n x = 2 [ l n x ∫ 1 d x − ∫ f ′ ( x ) ( ∫ g ( x ) d x ) d x ]
= 2 [ x l n x − ∫ 1 x × x d x ] + c = 2 [ x \space ln x - \int \frac {1}{x} \times x dx ] + c = 2 [ x l n x − ∫ x 1 × x d x ] + c
= 2 [ x l n x − x ] + c = 2 [ x \space ln x - x ] + c = 2 [ x l n x − x ] + c
Comments