∫0∞1/(1+x)1/4dx\intop_0^\infty1/(1+x)^{1/4}dx∫0∞1/(1+x)1/4dx
=[(4/3)∗(1+x)3/4]0∞=[(4/3)*(1+x)^{3/4}]_0^\infty=[(4/3)∗(1+x)3/4]0∞
=4/3∗(limx→∞(1+x)3/4−1)=4/3*(lim_{x \to \infty}(1+x)^{3/4}-1)=4/3∗(limx→∞(1+x)3/4−1)
=DNE=DNE=DNE
as the limit does not exist.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments