Answer to Question #100019 in Calculus for Santos

Question #100019
Integration by parts

1. Integral of 5x sin4x dx

2. Integral of x lnx dx
1
Expert's answer
2019-12-10T10:57:26-0500

Calculus

We need to find the Integrations using by parts


Solution:


f(x) g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int f(x) \space g(x) dx = f(x) \int g(x) dx -\int f' (x) (\int g(x) dx ) dx


1)


5x sin 4x dx=5x sin 4x dx\int 5x \space sin \space 4x \space dx = 5 \int x \space sin \space 4x \space dx


Here, f(x) = x and g(x) = sin 4x


Then f(x)=1f ' (x) = 1


5x sin 4x dx=5(xsin4x1.(sin4xdx)dx)\int 5x \space sin \space 4x \space dx =5 \Bigg( x \int sin 4x - \int 1. (\int sin 4x dx ) dx \Bigg)



=5(x(cos4x4)(cos4x4)dx)+c= 5 \Bigg( x (\frac {-cos 4x }{4}) - \int (\frac {-cos 4x }{4}) dx \Bigg) + c



=5(xcos4x4+sin4x16)+c= 5 \Bigg( \frac {- x cos 4x}{4 } + \frac {sin 4x}{16} \Bigg) + c

2)


x lnx dx=lnxx dxd(lnx)(xdx)dx\int x \space ln x \space dx = ln x \int x \space dx - \int d( ln x)( \int x dx ) dx



=lnx×x221x×x22dx+c= ln x \times \frac {x^2 }{2} - \int \frac {1}{x} \times \frac {x^2}{2} dx + c

=x22×lnx12xdx+c= \frac {x^2}{2} \times ln x - \frac {1}{2} \int x dx + c


=x22×lnx12×x22+c= \frac {x^2}{2} \times ln x - \frac {1}{2} \times \frac {x^2} {2} + c

==x22×lnxx24+c= = \frac {x^2}{2} \times ln x - \frac {x^2} {4} + c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment