Calculus
We need to find the Integrations using by parts
Solution:
∫f(x) g(x)dx=f(x)∫g(x)dx−∫f′(x)(∫g(x)dx)dx
1)
∫5x sin 4x dx=5∫x sin 4x dx
Here, f(x) = x and g(x) = sin 4x
Then f′(x)=1
∫5x sin 4x dx=5(x∫sin4x−∫1.(∫sin4xdx)dx)
=5(x(4−cos4x)−∫(4−cos4x)dx)+c
=5(4−xcos4x+16sin4x)+c
2)
∫x lnx dx=lnx∫x dx−∫d(lnx)(∫xdx)dx
=lnx×2x2−∫x1×2x2dx+c
=2x2×lnx−21∫xdx+c
=2x2×lnx−21×2x2+c
==2x2×lnx−4x2+c
Comments
Leave a comment