3.
Changing the parameter of the curve to x we get the expression
y=lnx,x∈[1,e].
Applying the formula of function graph arc length we get
L=∫1e1+(ln′(x))2dx=∫1e1+x21dx=∫1ex1+x2dx.
Answer: L=∫1ex1+x2dx.
4.
Similarly, let us change the curve parameter to y
x=ey,y∈[0,1].
Then,
L=∫011+(dydey)2dy=∫011+e2ydy.
Answer: L=∫011+e2ydy.
Comments