1.
Volume below the function "z=f(x,y)" and above the region R is given by "\\iint \\limits _R f(x,y)dA"
"V= \\iint \\limits _R f(x,y)dA=\\int\\limits _8 ^{10}\\int \\limits _3^4(2x+y)dy \\;dx=\\intop\\limits _8^{10} \\big[2xy+\\frac{1}{2}y^2 \\big]_3^4 dx="
"=\\int \\limits _8^{10} (8x+8)-(6x+\\frac{9}{2}) dx=\\int\\limits _8^{10} (2x+\\frac{7}{2})dx=\\big[x^2+ \\frac{7}{2}x\\big]_8^{10}="
"= (100+35)-(64+28)=43"
Answer: 43.
2.
Using the same formula for "z=x^2, R=\\{(x,y):0 \\leq x \\leq 6, 0 \\leq y \\leq 6\\}"
"V= \\iint \\limits _R x^2dA=\\int\\limits _0 ^{6}\\int \\limits _0^6 x^2dy \\;dx=\\intop\\limits _0^{6} \\big[x^2y\\big]_0^6 dx= \\intop\\limits _0^{6} 6x^2 dx= \\big[2x^3\\big]_0^6= 432"
Answer: 432.
3.
Using the same formula for "z=3-x, R=\\{(x,y):x^2+y^2=9\\}"
"V= \\iint \\limits _R(3-x)dA=\\int\\limits _{-3} ^{3}\\int \\limits _{-\\sqrt {9-y^2}}^{\\sqrt {9-y^2}}(3-x) \\;dx \\;dy=\\intop\\limits _{-3}^{3} \\big[3x-\\frac{1}{2}x^2\\big]_ {-\\sqrt {9-y^2}} ^ {\\sqrt {9-y^2}} dy="
"\\int \\limits _{-3}^{3}6 {\\sqrt {9-y^2}}dy= 6 * (\\pi 3^2)\/2=27\\pi"
Comments
Leave a comment