1.
Volume below the function z = f ( x , y ) z=f(x,y) z = f ( x , y ) and above the region R is given by ∬ R f ( x , y ) d A \iint \limits _R f(x,y)dA R ∬ f ( x , y ) d A
V = ∬ R f ( x , y ) d A = ∫ 8 10 ∫ 3 4 ( 2 x + y ) d y d x = ∫ 8 10 [ 2 x y + 1 2 y 2 ] 3 4 d x = V= \iint \limits _R f(x,y)dA=\int\limits _8 ^{10}\int \limits _3^4(2x+y)dy \;dx=\intop\limits _8^{10} \big[2xy+\frac{1}{2}y^2 \big]_3^4 dx= V = R ∬ f ( x , y ) d A = 8 ∫ 10 3 ∫ 4 ( 2 x + y ) d y d x = 8 ∫ 10 [ 2 x y + 2 1 y 2 ] 3 4 d x =
= ∫ 8 10 ( 8 x + 8 ) − ( 6 x + 9 2 ) d x = ∫ 8 10 ( 2 x + 7 2 ) d x = [ x 2 + 7 2 x ] 8 10 = =\int \limits _8^{10} (8x+8)-(6x+\frac{9}{2}) dx=\int\limits _8^{10} (2x+\frac{7}{2})dx=\big[x^2+ \frac{7}{2}x\big]_8^{10}= = 8 ∫ 10 ( 8 x + 8 ) − ( 6 x + 2 9 ) d x = 8 ∫ 10 ( 2 x + 2 7 ) d x = [ x 2 + 2 7 x ] 8 10 =
= ( 100 + 35 ) − ( 64 + 28 ) = 43 = (100+35)-(64+28)=43 = ( 100 + 35 ) − ( 64 + 28 ) = 43
Answer: 43.
2.
Using the same formula for z = x 2 , R = { ( x , y ) : 0 ≤ x ≤ 6 , 0 ≤ y ≤ 6 } z=x^2, R=\{(x,y):0 \leq x \leq 6, 0 \leq y \leq 6\} z = x 2 , R = {( x , y ) : 0 ≤ x ≤ 6 , 0 ≤ y ≤ 6 }
V = ∬ R x 2 d A = ∫ 0 6 ∫ 0 6 x 2 d y d x = ∫ 0 6 [ x 2 y ] 0 6 d x = ∫ 0 6 6 x 2 d x = [ 2 x 3 ] 0 6 = 432 V= \iint \limits _R x^2dA=\int\limits _0 ^{6}\int \limits _0^6 x^2dy \;dx=\intop\limits _0^{6} \big[x^2y\big]_0^6 dx= \intop\limits _0^{6} 6x^2 dx= \big[2x^3\big]_0^6= 432 V = R ∬ x 2 d A = 0 ∫ 6 0 ∫ 6 x 2 d y d x = 0 ∫ 6 [ x 2 y ] 0 6 d x = 0 ∫ 6 6 x 2 d x = [ 2 x 3 ] 0 6 = 432
Answer: 432.
3.
Using the same formula for z = 3 − x , R = { ( x , y ) : x 2 + y 2 = 9 } z=3-x, R=\{(x,y):x^2+y^2=9\} z = 3 − x , R = {( x , y ) : x 2 + y 2 = 9 }
V = ∬ R ( 3 − x ) d A = ∫ − 3 3 ∫ − 9 − y 2 9 − y 2 ( 3 − x ) d x d y = ∫ − 3 3 [ 3 x − 1 2 x 2 ] − 9 − y 2 9 − y 2 d y = V= \iint \limits _R(3-x)dA=\int\limits _{-3} ^{3}\int \limits _{-\sqrt {9-y^2}}^{\sqrt {9-y^2}}(3-x) \;dx \;dy=\intop\limits _{-3}^{3} \big[3x-\frac{1}{2}x^2\big]_ {-\sqrt {9-y^2}} ^ {\sqrt {9-y^2}} dy= V = R ∬ ( 3 − x ) d A = − 3 ∫ 3 − 9 − y 2 ∫ 9 − y 2 ( 3 − x ) d x d y = − 3 ∫ 3 [ 3 x − 2 1 x 2 ] − 9 − y 2 9 − y 2 d y =
∫ − 3 3 6 9 − y 2 d y = 6 ∗ ( π 3 2 ) / 2 = 27 π \int \limits _{-3}^{3}6 {\sqrt {9-y^2}}dy= 6 * (\pi 3^2)/2=27\pi − 3 ∫ 3 6 9 − y 2 d y = 6 ∗ ( π 3 2 ) /2 = 27 π
Comments