Question #100913
1. Use a double integral to find the volume V of the solid that is common to cylinders x^2 + y^2 = 81 and x^2 + z^2 = 81. Find the exact number and no tolerance

2. Use a triple integral to find the volume of the solid in the first octant bounded by the coordinate planes and the plane 9x+18y+8z = 144.

3. Use a triple integral to find the volume of the solid bounded by the surface y=x^2 and the planes x+z=8 and z=0.Give the exact answer in the form of a fraction.
1
Expert's answer
2020-01-12T14:20:42-0500

1.Volume=809081x2081x2dydzdxVolume = 8\int ^9_0\int^{\sqrt{81-x^2}}_0\int^{\sqrt{81-x^2}}_0dydzdx

Volume=809(81x2)2dxVolume=8\int^9_0(\sqrt{81-x^2})^2 dx

Volume=809(81x2)dxVolume=8\int^9_0(81-x^2 )dx

Volume=8[81xx3/3]09Volume=8[81x-x^3/3]^9_0

Volume=8(81×981×3)Volume=8(81×9-81×3)

Volume=81×6×8=3888(Ans)Volume=81×6×8=3888(Ans)

2.

Volume=01608x/2(16(9/8)x(9/4)y)dydxVolume=\int ^{16}_0\int^{8-x/2}_0(16-(9/8)x-(9/4)y)dydx

Volume=016[(16y(9/8)yx(9/8)y2)]08x/2Volume=\int ^{16}_0[(16y-(9/8)yx-(9/8)y^2)]^{8-x/2}_0

Volume=016[(16(8x/2)(9/8)(8xx2/2)(9/8)(8x/2)2)]dxVolume=\int ^{16}_0[(16(8-x/2)-(9/8)(8x-x^2/2) -(9/8)(8-x/2)^2)]dx

Volume=[4(8x/2)2(9/8)(4x2x3/6)+(3/16)(8x/2)3]016=224(ans)Volume=[-4( 8-x/2)^2-(9/8)(4x^2-x^3/6)+(3/16)(8-x/2)^3]^{16}_0=224(ans)

3.Volume=064y808xdzdxdyVolume= \int^{64}_0\int_ {\sqrt{y}}^8\int_0^{8-x}dzdxdy

Volume=064y8(8x)dxdyVolume= \int^{64}_0\int_ {\sqrt{y}}^8(8-x)dxdy

Volume=064[(8xx2/2)]y8dyVolume= \int^{64}_0[(8x-x^2/2)]^8_{√y}dy

Volume=064(32(8y)+y/2)dyVolume= \int^{64}_0(32-(8√y)+y/2)dy

Volume=(32y(8y3/2)+y2/4)]064Volume= (32y-(8y^{3/2})+y^2/4)]^{64}_{0}

Volume=(32×6484+642/4)]=1024(Ans)Volume= (32×64-8^4+64^2/4)]=1024(Ans)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS