1."Volume = 8\\int ^9_0\\int^{\\sqrt{81-x^2}}_0\\int^{\\sqrt{81-x^2}}_0dydzdx"
"Volume=8\\int^9_0(\\sqrt{81-x^2})^2 dx"
"Volume=8\\int^9_0(81-x^2 )dx"
"Volume=8[81x-x^3\/3]^9_0"
"Volume=8(81\u00d79-81\u00d73)"
"Volume=81\u00d76\u00d78=3888(Ans)"
2.
"Volume=\\int ^{16}_0\\int^{8-x\/2}_0(16-(9\/8)x-(9\/4)y)dydx"
"Volume=\\int ^{16}_0[(16y-(9\/8)yx-(9\/8)y^2)]^{8-x\/2}_0"
"Volume=\\int ^{16}_0[(16(8-x\/2)-(9\/8)(8x-x^2\/2) -(9\/8)(8-x\/2)^2)]dx"
"Volume=[-4( 8-x\/2)^2-(9\/8)(4x^2-x^3\/6)+(3\/16)(8-x\/2)^3]^{16}_0=224(ans)"
3."Volume= \\int^{64}_0\\int_ {\\sqrt{y}}^8\\int_0^{8-x}dzdxdy"
"Volume= \\int^{64}_0\\int_ {\\sqrt{y}}^8(8-x)dxdy"
"Volume= \\int^{64}_0[(8x-x^2\/2)]^8_{\u221ay}dy"
"Volume= \\int^{64}_0(32-(8\u221ay)+y\/2)dy"
"Volume= (32y-(8y^{3\/2})+y^2\/4)]^{64}_{0}"
"Volume= (32\u00d764-8^4+64^2\/4)]=1024(Ans)"
Comments
Leave a comment