a) Let us rewrite the numerator as follows: "2x^2 - x + 2 = 2[ x^2 - \\frac{x}{2} + 1] = 2[ (x-1)^2 + \\frac{3x}{2}]" - we have completed the square in the second term, to cancel the term "(x-1)^2" with the denominator.
Hence, "\\int \\frac{2 x^2 - x + 2}{x-1} = 2 \\int (x-1) dx + 3 \\int \\frac{x}{x-1} dx = 2 (\\frac{x^2}{2} - x) + 3 \\int \\frac{(x-1) +1}{x-1} dx = x^2 - 2x + 3x + 3 \\int \\frac{1}{x-1} dx = x^2 +x + 3 \\ln(x-1) + C"
b) Let us decompose the integrand into partial fractions: "\\frac{x-1}{x^2-4} = \\frac{x-1}{(x-2)(x+2)} = \\frac{A}{x-2} + \\frac{B}{x+2} = \\frac{(A+B)x + (2A-2B)}{(x-2)(x+2)}", from where comparing the numerator of right and left side, obtain linear system: "A + B = 1; 2A - 2 B = 1", which has the solution "A = \\frac{1}{4}, B = \\frac{3}{4}".
Hence, "\\int \\frac{x-1}{x^2-4} dx = \\int \\frac{1}{4(x-2)}dx + \\int \\frac{3}{4(x+2)}dx = \\frac{\\ln(x-2)}{4} + \\frac{3 \\ln(x+2)}{4} + C", where we used table integral "\\int \\frac{1}{x}dx = \\ln x + C".
Comments
Leave a comment