1. ∫ 0 3 ( ∫ 0 1 2 x x 2 + y d x ) d y = ∥ L e t u s i n t r o d u c e a n e w v a r i a b l e t = x 2 + y . O n t h i s s t e p w e c a n t h i n k , t h a t y i s a c o n s t a n t , b e c a u s e w e i n t e g r a t e w i t h r e s p e t t o x ⇒ d t = 2 x d x ⇒ d x = d t / ( 2 x ) ∥ = ∫ 0 3 ( ∫ y 1 + y t d t ) d y = = ∫ 0 3 2 3 ( ( 1 + y ) 3 / 2 − y 3 / 2 ) d y = ∥ d ( y + 1 ) = d y ∥ = 2 3 ∫ 0 3 ( 1 + y ) 3 / 2 d ( y + 1 ) − − 2 3 ∫ 0 3 y 3 / 2 d y = 2 3 ( 2 5 ( 1 + y ) 5 / 2 ) ∣ 0 3 − 2 3 ( 2 5 y 5 / 2 ) ∣ 0 3 = 1.\int\limits_0^3(\int\limits_0^12x\sqrt{x^2+y}\,dx)\,dy=\| Let~us~introduce~a~ new~ variable~ \\t=x^2+y.~On ~this~step ~we~ can~think,~ that~ y ~is~ a ~constant, ~because~we~\\integrate~with~respet~to~x\Rightarrow~dt=2xdx\Rightarrow dx=dt/(2x)\|=\int\limits_0^3(\int\limits_{y}^{1+y}\sqrt{t}\,dt)\,dy=\\=\int\limits_0^3\frac{2}{3}((1+y)^{3/2}-y^{3/2})\,dy=\|d(y+1)=dy\|=\frac{2}{3}\int\limits_0^3(1+y)^{3/2}\,d(y+1)-\\
-\frac{2}{3}\int\limits_0^3y^{3/2}\,dy=\frac{2}{3}(\frac{2}{5}(1+y)^{5/2})|^3_{0}-\frac{2}{3}(\frac{2}{5}y^{5/2})|^3_0= 1. 0 ∫ 3 ( 0 ∫ 1 2 x x 2 + y d x ) d y = ∥ L e t u s in t ro d u ce a n e w v a r iab l e t = x 2 + y . O n t hi s s t e p w e c an t hink , t ha t y i s a co n s t an t , b ec a u se w e in t e g r a t e w i t h res p e t t o x ⇒ d t = 2 x d x ⇒ d x = d t / ( 2 x ) ∥ = 0 ∫ 3 ( y ∫ 1 + y t d t ) d y = = 0 ∫ 3 3 2 (( 1 + y ) 3/2 − y 3/2 ) d y = ∥ d ( y + 1 ) = d y ∥ = 3 2 0 ∫ 3 ( 1 + y ) 3/2 d ( y + 1 ) − − 3 2 0 ∫ 3 y 3/2 d y = 3 2 ( 5 2 ( 1 + y ) 5/2 ) ∣ 0 3 − 3 2 ( 5 2 y 5/2 ) ∣ 0 3 =
= 2 3 ∗ 2 5 ( 4 5 / 2 − 1 5 / 2 − ( 3 5 / 2 − 0 5 / 2 ) ) = 4 15 ( 2 5 − 1 − 9 3 ) = 4 15 ( 31 − 9 3 ) =\frac{2}{3}*\frac{2}{5}(4^{5/2}-1^{5/2}-(3^{5/2}-0^{5/2}))=\frac{4}{15}(2^5-1-9\sqrt3)=\frac{4}{15}(31-9\sqrt3) = 3 2 ∗ 5 2 ( 4 5/2 − 1 5/2 − ( 3 5/2 − 0 5/2 )) = 15 4 ( 2 5 − 1 − 9 3 ) = 15 4 ( 31 − 9 3 )
2. ∫ 0 ln 3 ( ∫ 0 1 x y ∗ e x y 2 d y ) d x = ∥ ( e x y 2 ) y ′ = 2 x y ∗ e x y 2 ∥ = ∫ 0 ln 3 1 / 2 ∫ 0 1 2 x y ∗ e x y 2 d y d x = = ∫ 0 ln 3 1 / 2 ( e x y 2 ) ∣ 0 1 d x = 1 / 2 ∫ 0 ln 3 ( e x − 1 ) d x = 1 / 2 ( e x − x ) ∣ 0 ln 3 = = 1 / 2 ( 3 − ln 3 − ( e 0 − 0 ) ) = 1 / 2 ( 2 − ln 3 ) = 1 − ln 3 2 2.\int\limits_0^{\ln3}(\int\limits_0^1xy*e ^{xy^2}\,dy)\,dx=\|(e^{xy^2})'_y=2xy*e^{xy^2}\|=\int\limits_0^{\ln3}1/2
\int\limits_0^12xy*e^{xy^2}\,dy\,dx=\\=\int\limits_0^{\ln3}1/2(e^{xy^2})|_0^1\,dx=1/2\int\limits_0^{\ln3}(e^{x}-1)\,dx=1/2(e^x-x)|_0^{\ln3}=\\=1/2(3-\ln3-(e^0-0))=1/2(2-\ln3)=1-\frac{\ln3}{2} 2. 0 ∫ l n 3 ( 0 ∫ 1 x y ∗ e x y 2 d y ) d x = ∥ ( e x y 2 ) y ′ = 2 x y ∗ e x y 2 ∥ = 0 ∫ l n 3 1/2 0 ∫ 1 2 x y ∗ e x y 2 d y d x = = 0 ∫ l n 3 1/2 ( e x y 2 ) ∣ 0 1 d x = 1/2 0 ∫ l n 3 ( e x − 1 ) d x = 1/2 ( e x − x ) ∣ 0 l n 3 = = 1/2 ( 3 − ln 3 − ( e 0 − 0 )) = 1/2 ( 2 − ln 3 ) = 1 − 2 l n 3
Comments