1.0∫3(0∫12xx2+ydx)dy=∥Let us introduce a new variable t=x2+y. On this step we can think, that y is a constant, because we integrate with respet to x⇒ dt=2xdx⇒dx=dt/(2x)∥=0∫3(y∫1+ytdt)dy==0∫332((1+y)3/2−y3/2)dy=∥d(y+1)=dy∥=320∫3(1+y)3/2d(y+1)−−320∫3y3/2dy=32(52(1+y)5/2)∣03−32(52y5/2)∣03=
=32∗52(45/2−15/2−(35/2−05/2))=154(25−1−93)=154(31−93)
2.0∫ln3(0∫1xy∗exy2dy)dx=∥(exy2)y′=2xy∗exy2∥=0∫ln31/20∫12xy∗exy2dydx==0∫ln31/2(exy2)∣01dx=1/20∫ln3(ex−1)dx=1/2(ex−x)∣0ln3==1/2(3−ln3−(e0−0))=1/2(2−ln3)=1−2ln3
Comments