"1.\\int\\limits_0^3(\\int\\limits_0^12x\\sqrt{x^2+y}\\,dx)\\,dy=\\| Let~us~introduce~a~ new~ variable~ \\\\t=x^2+y.~On ~this~step ~we~ can~think,~ that~ y ~is~ a ~constant, ~because~we~\\\\integrate~with~respet~to~x\\Rightarrow~dt=2xdx\\Rightarrow dx=dt\/(2x)\\|=\\int\\limits_0^3(\\int\\limits_{y}^{1+y}\\sqrt{t}\\,dt)\\,dy=\\\\=\\int\\limits_0^3\\frac{2}{3}((1+y)^{3\/2}-y^{3\/2})\\,dy=\\|d(y+1)=dy\\|=\\frac{2}{3}\\int\\limits_0^3(1+y)^{3\/2}\\,d(y+1)-\\\\\n-\\frac{2}{3}\\int\\limits_0^3y^{3\/2}\\,dy=\\frac{2}{3}(\\frac{2}{5}(1+y)^{5\/2})|^3_{0}-\\frac{2}{3}(\\frac{2}{5}y^{5\/2})|^3_0="
"=\\frac{2}{3}*\\frac{2}{5}(4^{5\/2}-1^{5\/2}-(3^{5\/2}-0^{5\/2}))=\\frac{4}{15}(2^5-1-9\\sqrt3)=\\frac{4}{15}(31-9\\sqrt3)"
"2.\\int\\limits_0^{\\ln3}(\\int\\limits_0^1xy*e ^{xy^2}\\,dy)\\,dx=\\|(e^{xy^2})'_y=2xy*e^{xy^2}\\|=\\int\\limits_0^{\\ln3}1\/2\n\\int\\limits_0^12xy*e^{xy^2}\\,dy\\,dx=\\\\=\\int\\limits_0^{\\ln3}1\/2(e^{xy^2})|_0^1\\,dx=1\/2\\int\\limits_0^{\\ln3}(e^{x}-1)\\,dx=1\/2(e^x-x)|_0^{\\ln3}=\\\\=1\/2(3-\\ln3-(e^0-0))=1\/2(2-\\ln3)=1-\\frac{\\ln3}{2}"
Comments
Leave a comment