v(t)=A(1−e−tmax_speedt)
a(t)=v′(t)=tmax_speedAe−tmax_speedtv(t)=A(1−e−tmax_speedt)
s(t)=∫v(t)dt=∫A(1−e−tmax_speedt)dt=
=A(t+tmax_speed⋅e−tmax_speedt)+C
s(0)=0=>C=−A⋅tmax_speed
s(t)=A(t−tmax_speed+tmax_speed⋅e−tmax_speedt) Given that
v(2.6)=A(1−e−tmax_speed2.6)=28
s(10.46)=A(10.46−tmax_speed+tmax_speed⋅e−tmax_speed10.46)=400
1−e−tmax_speed2.610.46−tmax_speed+tmax_speed⋅e−tmax_speed10.46=28400 tmax_speed≈5.834 s or tmax_speed≈28.424 s
A≈77.864 m/s or A≈320.318 m/s
vmax=A(1−e−tmax_speedtmax_speed)=A(1−e−1)
amax=tmax_speedAe−tmax_speedtmax_speed=tmax_speedAe−1 tmax_speed≈5.834 s,A≈77.864 m/s
vmax=77.864(1−e−1) m/s≈49.219 m/s
amax=5.834 s77.864 m/s⋅e−1≈4.910 m/s2 Or
tmax_speed≈28.424 s,A≈320.318 m/s
vmax=320.318(1−e−1) m/s≈202.480 m/s
amax=28.424 s320.318 m/s⋅e−1≈4.146 m/s2 202.480 m/s≈729 km/h
I think, that the car cannot have such speed.
Comments