Solution.
- Using the formula
"sin2x=2sinxcosx" get
"\\intop cosxsin2xdx=\\intop 2(cosx)^2sinxdx" We use a replacement k=cosx, therefore dk=-sinxdx. As result making a replacement, we get
"\\intop 2(cosx)^2sinxdx=-\\intop 2k^2dk=-\\frac {2k^3}{3}+C" where C is constant. Returning to the replacement, we get
"\\intop cosxsin2xdx=-\\frac{2(cosx)^3}{3} +C"
2. Integrate using the partial integration method
a)
"\\begin{vmatrix}\n u=e^x & dv=cosxdx \\\\\n du=e^xdx & v=sinx\n\\end{vmatrix}" Therefore we write the integral as
"\\intop e^xcosxdx=e^xsinx-\\intop e^xsinxdx" Using the partial integration method get
"\\begin{vmatrix}\n u=e^x & dv=sinxdx \\\\\n du=e^xdx & v=-cosx\n\\end{vmatrix}"
"e^xsinx-\\intop e^xsinxdx=e^xsinx+e^xcosx-\\intop e^xcosx" Hence
"\\intop e^xcosxdx=\\frac{e^xsinx+e^xcosx}{2}+C" where C is constant.
b. Using the partial integration method get
"\\begin{vmatrix}\n u=x^2 & dv=e^{3x}dx \\\\\n du=2xdx & v=\\frac{e^{3x}}{3}\n\\end{vmatrix}" Therefore we write the integral as
"\\intop x^2e^{3x}dx=\\frac{x^2e^{3x}}{3} -\\frac{2}{3}\\intop xe^{3x}dx" Using the partial integration method get
"\\begin{vmatrix}\n u=x & dv=e^{3x}dx \\\\\n du=dx & v=\\frac{e^{3x}}{3}\n\\end{vmatrix}" Therefore we write the integral as
"\\intop x^2e^{3x}dx=\\frac{x^2e^{3x}}{3} -\\frac{2xe^{3x}}{9} +\\frac{2}{9}\\intop e^{3x}dx" As result
"\\intop x^2e^{3x}dx=\\frac{x^2e^{3x}}{3} -\\frac{2xe^{3x}}{9} +\\frac{2e^{3x}}{27}+C" where C is constant.
Answer. 1.
"\\intop cosxsin2xdx=-\\frac{2(cosx)^3}{3} +C" where C is constant.
2 a.
"\\intop e^xcosxdx=\\frac{e^xsinx+e^xcosx}{2}+C" where C is constant.
2 b.
"\\intop x^2e^{3x}dx=\\frac{x^2e^{3x}}{3} -\\frac{2xe^{3x}}{9} +\\frac{2e^{3x}}{27}+C" where C is constant.
Comments
Leave a comment