Solution.
Using the formula s i n 2 x = 2 s i n x c o s x sin2x=2sinxcosx s in 2 x = 2 s in x cos x get
∫ c o s x s i n 2 x d x = ∫ 2 ( c o s x ) 2 s i n x d x \intop cosxsin2xdx=\intop 2(cosx)^2sinxdx ∫ cos x s in 2 x d x = ∫ 2 ( cos x ) 2 s in x d x We use a replacement k=cosx, therefore dk=-sinxdx. As result making a replacement, we get
∫ 2 ( c o s x ) 2 s i n x d x = − ∫ 2 k 2 d k = − 2 k 3 3 + C \intop 2(cosx)^2sinxdx=-\intop 2k^2dk=-\frac {2k^3}{3}+C ∫ 2 ( cos x ) 2 s in x d x = − ∫ 2 k 2 d k = − 3 2 k 3 + C where C is constant. Returning to the replacement, we get
∫ c o s x s i n 2 x d x = − 2 ( c o s x ) 3 3 + C \intop cosxsin2xdx=-\frac{2(cosx)^3}{3} +C ∫ cos x s in 2 x d x = − 3 2 ( cos x ) 3 + C
2. Integrate using the partial integration method
a)
∣ u = e x d v = c o s x d x d u = e x d x v = s i n x ∣ \begin{vmatrix}
u=e^x & dv=cosxdx \\
du=e^xdx & v=sinx
\end{vmatrix} ∣ ∣ u = e x d u = e x d x d v = cos x d x v = s in x ∣ ∣ Therefore we write the integral as
∫ e x c o s x d x = e x s i n x − ∫ e x s i n x d x \intop e^xcosxdx=e^xsinx-\intop e^xsinxdx ∫ e x cos x d x = e x s in x − ∫ e x s in x d x Using the partial integration method get
∣ u = e x d v = s i n x d x d u = e x d x v = − c o s x ∣ \begin{vmatrix}
u=e^x & dv=sinxdx \\
du=e^xdx & v=-cosx
\end{vmatrix} ∣ ∣ u = e x d u = e x d x d v = s in x d x v = − cos x ∣ ∣
e x s i n x − ∫ e x s i n x d x = e x s i n x + e x c o s x − ∫ e x c o s x e^xsinx-\intop e^xsinxdx=e^xsinx+e^xcosx-\intop e^xcosx e x s in x − ∫ e x s in x d x = e x s in x + e x cos x − ∫ e x cos x Hence
∫ e x c o s x d x = e x s i n x + e x c o s x 2 + C \intop e^xcosxdx=\frac{e^xsinx+e^xcosx}{2}+C ∫ e x cos x d x = 2 e x s in x + e x cos x + C where C is constant.
b. Using the partial integration method get
∣ u = x 2 d v = e 3 x d x d u = 2 x d x v = e 3 x 3 ∣ \begin{vmatrix}
u=x^2 & dv=e^{3x}dx \\
du=2xdx & v=\frac{e^{3x}}{3}
\end{vmatrix} ∣ ∣ u = x 2 d u = 2 x d x d v = e 3 x d x v = 3 e 3 x ∣ ∣ Therefore we write the integral as
∫ x 2 e 3 x d x = x 2 e 3 x 3 − 2 3 ∫ x e 3 x d x \intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2}{3}\intop xe^{3x}dx ∫ x 2 e 3 x d x = 3 x 2 e 3 x − 3 2 ∫ x e 3 x d x Using the partial integration method get
∣ u = x d v = e 3 x d x d u = d x v = e 3 x 3 ∣ \begin{vmatrix}
u=x & dv=e^{3x}dx \\
du=dx & v=\frac{e^{3x}}{3}
\end{vmatrix} ∣ ∣ u = x d u = d x d v = e 3 x d x v = 3 e 3 x ∣ ∣ Therefore we write the integral as
∫ x 2 e 3 x d x = x 2 e 3 x 3 − 2 x e 3 x 9 + 2 9 ∫ e 3 x d x \intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2}{9}\intop e^{3x}dx ∫ x 2 e 3 x d x = 3 x 2 e 3 x − 9 2 x e 3 x + 9 2 ∫ e 3 x d x As result
∫ x 2 e 3 x d x = x 2 e 3 x 3 − 2 x e 3 x 9 + 2 e 3 x 27 + C \intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2e^{3x}}{27}+C ∫ x 2 e 3 x d x = 3 x 2 e 3 x − 9 2 x e 3 x + 27 2 e 3 x + C where C is constant.
Answer. 1.
∫ c o s x s i n 2 x d x = − 2 ( c o s x ) 3 3 + C \intop cosxsin2xdx=-\frac{2(cosx)^3}{3} +C ∫ cos x s in 2 x d x = − 3 2 ( cos x ) 3 + C where C is constant.
2 a.
∫ e x c o s x d x = e x s i n x + e x c o s x 2 + C \intop e^xcosxdx=\frac{e^xsinx+e^xcosx}{2}+C ∫ e x cos x d x = 2 e x s in x + e x cos x + C where C is constant.
2 b.
∫ x 2 e 3 x d x = x 2 e 3 x 3 − 2 x e 3 x 9 + 2 e 3 x 27 + C \intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2e^{3x}}{27}+C ∫ x 2 e 3 x d x = 3 x 2 e 3 x − 9 2 x e 3 x + 27 2 e 3 x + C where C is constant.
Comments