Solution.
- Using the formula
sin2x=2sinxcosx get
∫cosxsin2xdx=∫2(cosx)2sinxdx We use a replacement k=cosx, therefore dk=-sinxdx. As result making a replacement, we get
∫2(cosx)2sinxdx=−∫2k2dk=−32k3+C where C is constant. Returning to the replacement, we get
∫cosxsin2xdx=−32(cosx)3+C
2. Integrate using the partial integration method
a)
∣∣u=exdu=exdxdv=cosxdxv=sinx∣∣ Therefore we write the integral as
∫excosxdx=exsinx−∫exsinxdx Using the partial integration method get
∣∣u=exdu=exdxdv=sinxdxv=−cosx∣∣
exsinx−∫exsinxdx=exsinx+excosx−∫excosx Hence
∫excosxdx=2exsinx+excosx+C where C is constant.
b. Using the partial integration method get
∣∣u=x2du=2xdxdv=e3xdxv=3e3x∣∣ Therefore we write the integral as
∫x2e3xdx=3x2e3x−32∫xe3xdx Using the partial integration method get
∣∣u=xdu=dxdv=e3xdxv=3e3x∣∣ Therefore we write the integral as
∫x2e3xdx=3x2e3x−92xe3x+92∫e3xdx As result
∫x2e3xdx=3x2e3x−92xe3x+272e3x+C where C is constant.
Answer. 1.
∫cosxsin2xdx=−32(cosx)3+C where C is constant.
2 a.
∫excosxdx=2exsinx+excosx+C where C is constant.
2 b.
∫x2e3xdx=3x2e3x−92xe3x+272e3x+C where C is constant.
Comments