Question #101489
1. Integrate with the placement method: ∫cosxsin2xdx

2. Integrate using the partial integration method
a.) ∫e^x*cosx dx
b.) ∫x^2*e^3x dx
1
Expert's answer
2020-01-20T09:45:12-0500

Solution.

  1. Using the formula
sin2x=2sinxcosxsin2x=2sinxcosx

get


cosxsin2xdx=2(cosx)2sinxdx\intop cosxsin2xdx=\intop 2(cosx)^2sinxdx

We use a replacement k=cosx, therefore dk=-sinxdx. As result making a replacement, we get

2(cosx)2sinxdx=2k2dk=2k33+C\intop 2(cosx)^2sinxdx=-\intop 2k^2dk=-\frac {2k^3}{3}+C

where C is constant. Returning to the replacement, we get


cosxsin2xdx=2(cosx)33+C\intop cosxsin2xdx=-\frac{2(cosx)^3}{3} +C


2. Integrate using the partial integration method

a)


u=exdv=cosxdxdu=exdxv=sinx\begin{vmatrix} u=e^x & dv=cosxdx \\ du=e^xdx & v=sinx \end{vmatrix}

Therefore we write the integral as


excosxdx=exsinxexsinxdx\intop e^xcosxdx=e^xsinx-\intop e^xsinxdx

Using the partial integration method get


u=exdv=sinxdxdu=exdxv=cosx\begin{vmatrix} u=e^x & dv=sinxdx \\ du=e^xdx & v=-cosx \end{vmatrix}

exsinxexsinxdx=exsinx+excosxexcosxe^xsinx-\intop e^xsinxdx=e^xsinx+e^xcosx-\intop e^xcosx

Hence


excosxdx=exsinx+excosx2+C\intop e^xcosxdx=\frac{e^xsinx+e^xcosx}{2}+C

where C is constant.

b. Using the partial integration method get


u=x2dv=e3xdxdu=2xdxv=e3x3\begin{vmatrix} u=x^2 & dv=e^{3x}dx \\ du=2xdx & v=\frac{e^{3x}}{3} \end{vmatrix}

Therefore we write the integral as


x2e3xdx=x2e3x323xe3xdx\intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2}{3}\intop xe^{3x}dx

Using the partial integration method get


u=xdv=e3xdxdu=dxv=e3x3\begin{vmatrix} u=x & dv=e^{3x}dx \\ du=dx & v=\frac{e^{3x}}{3} \end{vmatrix}

Therefore we write the integral as


x2e3xdx=x2e3x32xe3x9+29e3xdx\intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2}{9}\intop e^{3x}dx

As result


x2e3xdx=x2e3x32xe3x9+2e3x27+C\intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2e^{3x}}{27}+C

where C is constant.

Answer. 1.


cosxsin2xdx=2(cosx)33+C\intop cosxsin2xdx=-\frac{2(cosx)^3}{3} +C

where C is constant.

2 a.


excosxdx=exsinx+excosx2+C\intop e^xcosxdx=\frac{e^xsinx+e^xcosx}{2}+C

where C is constant.

2 b.


x2e3xdx=x2e3x32xe3x9+2e3x27+C\intop x^2e^{3x}dx=\frac{x^2e^{3x}}{3} -\frac{2xe^{3x}}{9} +\frac{2e^{3x}}{27}+C

where C is constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS