The equation of a sphere is:
x2+y2+z2−a−2λ(x+2y+3z)=0
(x2−2λx+λ2)−λ2+(y2−4λy+4λ2)−4λ2+(z2−6λz+9λ2)−9λ2=a
(x−λ)2+(y−2λ)2+(z−3λ)2=a+14λ2
The radius of the sphere:
R=a+14λ2
The center is:
(λ,2λ,3λ)
The distance from center to the tangent plane:
d=42+32∣4λ+6λ−15∣=∣2λ−3∣
We have:
R=d
Then:
a+14λ2=∣2λ−3∣
a+14λ2=4λ2−12λ+9
10λ2+12λ+a−9=0
λ=20−12±144−40(a−9)=10−6±38−10(a−9)
Substitute λ in the equation of the sphere, and we get equations of two different spheres.
Comments