The equation of a sphere is:
"x\u00b2+y\u00b2+z\u00b2-a-2\\lambda(x+2y+3z)=0"
"(x^2-2\\lambda x+\\lambda^2)-\\lambda^2+(y^2-4\\lambda y+4\\lambda^2)-4\\lambda^2+(z^2-6\\lambda z+9\\lambda^2)-9\\lambda^2=a"
"(x-\\lambda)^2+(y-2\\lambda)^2+(z-3\\lambda)^2=a+14\\lambda^2"
The radius of the sphere:
"R=\\sqrt{a+14\\lambda^2}"
The center is:
"(\\lambda,2\\lambda,3\\lambda)"
The distance from center to the tangent plane:
"d=\\frac{|4\\lambda+6\\lambda-15|}{\\sqrt{4^2+3^2}}=|2\\lambda-3|"
We have:
"R=d"
Then:
"\\sqrt{a+14\\lambda^2}=|2\\lambda-3|"
"a+14\\lambda^2=4\\lambda^2-12\\lambda+9"
"10\\lambda^2+12\\lambda+a-9=0"
"\\lambda=\\frac{-12\\pm\\sqrt{144-40(a-9)}}{20}=\\frac{-6\\pm\\sqrt{38-10(a-9)}}{10}"
Substitute "\\lambda" in the equation of the sphere, and we get equations of two different spheres.
Comments
Leave a comment