Submit u = ( u 1 , u 2 , u 3 ) u=(u_1,u_2,u_3) u = ( u 1 , u 2 , u 3 ) , v = ( v 1 , v 2 , v 3 ) v=(v_1,v_2,v_3) v = ( v 1 , v 2 , v 3 ) .
Calculate vector product of u u u and v v v :
u × v = ∣ i ⃗ j ⃗ k ⃗ u 1 u 2 u 3 v 1 v 2 v 3 ∣ = i ⃗ ( u 2 v 3 − u 3 v 2 ) + j ⃗ ( u 1 v 3 − u 3 v 1 ) + k ⃗ ( u 1 v 2 − u 2 v 1 ) = = ( u 2 v 3 − u 3 v 2 , u 1 v 3 − u 3 v 1 , u 1 v 2 − u 2 v 1 ) . u\times v=\begin{vmatrix}
\vec i & \vec j & \vec k \\
u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3
\end{vmatrix}
=\vec i(u_2v_3-u_3v_2)+\vec j(u_1v_3-u_3v_1)+\vec k(u_1v_2-u_2v_1)=\\
{}=(u_2v_3-u_3v_2,\,u_1v_3-u_3v_1,\,u_1v_2-u_2v_1). u × v = ∣ ∣ i u 1 v 1 j u 2 v 2 k u 3 v 3 ∣ ∣ = i ( u 2 v 3 − u 3 v 2 ) + j ( u 1 v 3 − u 3 v 1 ) + k ( u 1 v 2 − u 2 v 1 ) = = ( u 2 v 3 − u 3 v 2 , u 1 v 3 − u 3 v 1 , u 1 v 2 − u 2 v 1 ) . .
And obtain:
u × v × u = ∣ i ⃗ j ⃗ k ⃗ u 2 v 3 − u 3 v 2 u 1 v 3 − u 3 v 1 u 1 v 2 − u 2 v 1 u 1 u 2 u 3 ∣ = i ⃗ ( u 1 u 3 v 3 − u 3 2 v 1 − − u 1 u 2 v 2 + u 2 2 v 1 ) + j ⃗ ( u 2 u 3 v 3 − u 3 2 v 2 − u 1 2 v 2 + u 1 u 2 v 1 ) + k ⃗ ( u 2 2 v 3 − u 2 u 3 v 2 − − u 1 2 v 3 + u 1 u 3 v 1 ) = ( u 1 u 3 v 3 − u 3 2 v 1 − u 1 u 2 v 2 + u 2 2 v 1 , u 2 u 3 v 3 − u 3 2 v 2 − − u 1 2 v 2 + u 1 u 2 v 1 , u 2 2 v 3 − u 2 u 3 v 2 − u 1 2 v 3 + u 1 u 3 v 1 ) . u\times v\times u=\begin{vmatrix}
\vec i & \vec j & \vec k \\
u_2v_3-u_3v_2 & u_1v_3-u_3v_1 & u_1v_2-u_2v_1 \\
u_1 & u_2 & u_3
\end{vmatrix}
=\vec i(u_1u_3v_3-u_3^2v_1-\\
{}-u_1u_2v_2+u_2^2v_1)+\vec j(u_2u_3v_3-u_3^2v_2-u_1^2v_2+u_1u_2v_1)+\vec k(u_2^2v_3-u_2u_3v_2-\\
{}-u_1^2v_3+u_1u_3v_1)=(u_1u_3v_3-u_3^2v_1-u_1u_2v_2+u_2^2v_1,\,u_2u_3v_3-u_3^2v_2-\\
{}-u_1^2v_2+u_1u_2v_1,\,u_2^2v_3-u_2u_3v_2-u_1^2v_3+u_1u_3v_1). u × v × u = ∣ ∣ i u 2 v 3 − u 3 v 2 u 1 j u 1 v 3 − u 3 v 1 u 2 k u 1 v 2 − u 2 v 1 u 3 ∣ ∣ = i ( u 1 u 3 v 3 − u 3 2 v 1 − − u 1 u 2 v 2 + u 2 2 v 1 ) + j ( u 2 u 3 v 3 − u 3 2 v 2 − u 1 2 v 2 + u 1 u 2 v 1 ) + k ( u 2 2 v 3 − u 2 u 3 v 2 − − u 1 2 v 3 + u 1 u 3 v 1 ) = ( u 1 u 3 v 3 − u 3 2 v 1 − u 1 u 2 v 2 + u 2 2 v 1 , u 2 u 3 v 3 − u 3 2 v 2 − − u 1 2 v 2 + u 1 u 2 v 1 , u 2 2 v 3 − u 2 u 3 v 2 − u 1 2 v 3 + u 1 u 3 v 1 ) .
According to vector product properties u × v × u = u × ( v × u ) = − ( v × u ) × u u\times v\times u=u\times (v\times u)=-(v\times u)\times u u × v × u = u × ( v × u ) = − ( v × u ) × u , so
v × u × u = − u × v × u = − ( u 1 u 3 v 3 − u 3 2 v 1 − u 1 u 2 v 2 + u 2 2 v 1 , u 2 u 3 v 3 − u 3 2 v 2 − − u 1 2 v 2 + u 1 u 2 v 1 , u 2 2 v 3 − u 2 u 3 v 2 − u 1 2 v 3 + u 1 u 3 v 1 ) = ( − u 1 u 3 v 3 + u 3 2 v 1 + u 1 u 2 v 2 − − u 2 2 v 1 , − u 2 u 3 v 3 + u 3 2 v 2 + u 1 2 v 2 − u 1 u 2 v 1 , − u 2 2 v 3 + u 2 u 3 v 2 + u 1 2 v 3 − u 1 u 3 v 1 ) . v\times u\times u=-u\times v\times u=-(u_1u_3v_3-u_3^2v_1-u_1u_2v_2+u_2^2v_1,\,u_2u_3v_3-u_3^2v_2-\\
{}-u_1^2v_2+u_1u_2v_1,\,u_2^2v_3-u_2u_3v_2-u_1^2v_3+u_1u_3v_1)=(-u_1u_3v_3+u_3^2v_1+u_1u_2v_2-\\
{}-u_2^2v_1,\,-u_2u_3v_3+u_3^2v_2+u_1^2v_2-u_1u_2v_1,\,-u_2^2v_3+u_2u_3v_2+u_1^2v_3-u_1u_3v_1). v × u × u = − u × v × u = − ( u 1 u 3 v 3 − u 3 2 v 1 − u 1 u 2 v 2 + u 2 2 v 1 , u 2 u 3 v 3 − u 3 2 v 2 − − u 1 2 v 2 + u 1 u 2 v 1 , u 2 2 v 3 − u 2 u 3 v 2 − u 1 2 v 3 + u 1 u 3 v 1 ) = ( − u 1 u 3 v 3 + u 3 2 v 1 + u 1 u 2 v 2 − − u 2 2 v 1 , − u 2 u 3 v 3 + u 3 2 v 2 + u 1 2 v 2 − u 1 u 2 v 1 , − u 2 2 v 3 + u 2 u 3 v 2 + u 1 2 v 3 − u 1 u 3 v 1 ) .
Comments