Suppose u and v are vectors in 3–space where u = (u1, u2, u3) and v = (v1, v2, v3). Evaluate u×v×u and v × u × u.
Submit "u=(u_1,u_2,u_3)", "v=(v_1,v_2,v_3)".
Calculate vector product of "u" and "v":
"u\\times v=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\\n u_1 & u_2 & u_3 \\\\\nv_1 & v_2 & v_3\n\\end{vmatrix}\n=\\vec i(u_2v_3-u_3v_2)+\\vec j(u_1v_3-u_3v_1)+\\vec k(u_1v_2-u_2v_1)=\\\\\n{}=(u_2v_3-u_3v_2,\\,u_1v_3-u_3v_1,\\,u_1v_2-u_2v_1).".
And obtain:
"u\\times v\\times u=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\\n u_2v_3-u_3v_2 & u_1v_3-u_3v_1 & u_1v_2-u_2v_1 \\\\\n u_1 & u_2 & u_3\n\\end{vmatrix}\n=\\vec i(u_1u_3v_3-u_3^2v_1-\\\\\n{}-u_1u_2v_2+u_2^2v_1)+\\vec j(u_2u_3v_3-u_3^2v_2-u_1^2v_2+u_1u_2v_1)+\\vec k(u_2^2v_3-u_2u_3v_2-\\\\\n{}-u_1^2v_3+u_1u_3v_1)=(u_1u_3v_3-u_3^2v_1-u_1u_2v_2+u_2^2v_1,\\,u_2u_3v_3-u_3^2v_2-\\\\\n{}-u_1^2v_2+u_1u_2v_1,\\,u_2^2v_3-u_2u_3v_2-u_1^2v_3+u_1u_3v_1)."
According to vector product properties "u\\times v\\times u=u\\times (v\\times u)=-(v\\times u)\\times u", so
"v\\times u\\times u=-u\\times v\\times u=-(u_1u_3v_3-u_3^2v_1-u_1u_2v_2+u_2^2v_1,\\,u_2u_3v_3-u_3^2v_2-\\\\\n{}-u_1^2v_2+u_1u_2v_1,\\,u_2^2v_3-u_2u_3v_2-u_1^2v_3+u_1u_3v_1)=(-u_1u_3v_3+u_3^2v_1+u_1u_2v_2-\\\\\n{}-u_2^2v_1,\\,-u_2u_3v_3+u_3^2v_2+u_1^2v_2-u_1u_2v_1,\\,-u_2^2v_3+u_2u_3v_2+u_1^2v_3-u_1u_3v_1)."
Comments
Leave a comment