Answer to Question #129861 in Analytic Geometry for Grace kimanzi

Question #129861
A circle passes through the points A(-1,2),B (3,4) C(2,3).determine it's equation
1
Expert's answer
2020-08-17T19:31:07-0400
SolutionSolution

Start with the General Form of circle.

Substitution of A, B, C.


Let the circle be x2+y2+Dx+Ey+F=0x^2+y^2+Dx+Ey+F=0


(1,2), (1)2+22D+2E+F=0(3,4), 32+42+3D+4E+F=0(2,3), 22+32+2D+3E+F=0(-1,2),\ (-1)^2+2^2-D+2E+F=0\\ (3,4),\ 3^2+4^2+3D+4E+F=0\\ (2,3),\ 2^2+3^2+2D+3E+F=0


Simplification

D2EF=5...........(1)3D+4E+F=25.....(2)2D+3E+F=13.....(3)D-2E-F=5...........(1)\\ 3D+4E+F=-25.....(2)\\ 2D+3E+F=-13.....(3)


Solve the equations.

2(1)+(2), D=3(2)+(3), D+E=12(3)+E=12    E=12+3=9(3)2(9)F=5    15F=5    F=10    F=102(1)+(2),\ D=-3\\ (2)+(3),\ D+E=-12\\ (-3)+E=-12 \implies E=-12+3=-9\\ (-3)-2(-9)-F=5\\ \implies 15-F=5\\ \implies -F=-10 \implies F=10


Substitute D, E, F in the General Form.


The equation of the circle is x2+y23x9y+10=0x^2+y^2-3x-9y+10=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment