Angle between planes equals angle between normal vectors of these planes.
Plane normal vector has coordinates "\\vec{n}" = (1, 1, 1).(1*x+1*y+1*z=5)
Plane 0YZ (x=0) normal vector has coordinates "\\vec{i}" =(1, 0, 0).
"cos(\\vec{n},\\vec{i})=\\frac{\\vec{n}*\\vec{i}}{|\\vec{n}|*|\\vec{i}|}=\\frac{1*1+1*0+1*0}{\\sqrt{1^2+1^2+1^2}*\\sqrt{1^2+0^2+0^2}}=\\frac{1}{\\sqrt{3}}"
Plane 0XZ (y=0) normal vector has coordinates "\\vec{j}=(0, 1, 0)."
"cos(\\vec{n},\\vec{j})=\\frac{\\vec{n}*\\vec{j}}{|\\vec{n}|*|\\vec{j}|}=\\frac{1*0+1*1+1*0}{\\sqrt{1^2+1^2+1^2}*\\sqrt{0^2+1^2+0^2}}=\\frac{1}{\\sqrt{3}}"
Plane 0XY (z=0) normal vector has coordinates "\\vec{k}=(0, 0, 1)."
"cos(\\vec{n},\\vec{k})=\\frac{\\vec{n}*\\vec{k}}{|\\vec{n}|*|\\vec{k}|}=\\frac{1*0+1*0+1*1}{\\sqrt{1^2+1^2+1^2}*\\sqrt{0^2+0^2+1^2}}=\\frac{1}{\\sqrt{3}}"
Plane x+2y+3z=5 normal vector has coordinates "\\vec{m}=(1, 2, 3)."
"cos(\\vec{n},\\vec{m})=\\frac{\\vec{n}*\\vec{m}}{|\\vec{n}|*|\\vec{m}|}=\\frac{1*1+1*2+1*3}{\\sqrt{1^2+1^2+1^2}*\\sqrt{1^2+2^2+3^2}}=\\frac{6}{\\sqrt{42}}"
Comments
Leave a comment