"(1)\\; B \\times C = \\vec i (b_xc_x-b_zc_y)+\\vec j(b_zc_x-b_xc_z)+\\vec k(b_xc_y-b_yc_x)\\\\\n(2)\\;A \\times (B \\times C) = \\vec i(0-0)+\\vec j (0-a_x(b_xc_y-b_yc_x)) + \\\\ +\\vec k (a_x(b_zc_x-b_xc_z)-0)= \\\\\n=\\vec j (a_xb_yc_x-a_xb_xc_y)+\\vec k (a_xb_zc_x-a_xb_xc_z)\\\\\n(3)\\;A*C=a_xc_x\\\\\n(4)\\;(A*C)*B=\\vec i (a_xb_xc_x) + \\vec j (a_xb_yc_x)+\\vec k (a_xb_zc_x)\\\\\n(5)\\; A*B=a_xb_x\\\\\n(6)\\;(A*B)*C=\\vec i (a_xb_xc_x)+\\vec j (a_xb_xc_y)+\\vec k (a_xb_xc_z)\\\\"
Then substract the expression obtained in (6) from expression obtained in (4).
"(A*C)*B - (A*B)*C=\\vec j (a_xb_yc_x-a_xb_xc_y)+\\vec k (a_xb_zc_x-a_xb_xc_z)"
This is equal to the expression obtained in (2). It means that"A\\times (B\\times C)=(A*C)*B-(A*B)*C"
Comments
Leave a comment