The volume of a parallelepiped determined by the vectors a , b , and c , is the magnitude of their scalar triple product.
and the formula for finding the volume is given by;
Volume = (height) × (Area of base)
V o l u m e , V = ∣ 𝐚 . ( 𝐛 × 𝐜 ) ∣ Volume, V=\begin{vmatrix}
𝐚. (𝐛 ×𝐜) \\
\end{vmatrix} V o l u m e , V = ∣ ∣ a . ( b × c ) ∣ ∣
⇒ V = ∣ ( 1 , 1 , − 1 ) . ( ( 1 , − 1 , 1 ) × ( − 1 , 1 , 1 ) ) ∣ ⇒V=\begin{vmatrix}
(1,1,-1).((1,-1,1)×(-1,1,1)) \\
\end{vmatrix} ⇒ V = ∣ ∣ ( 1 , 1 , − 1 ) . (( 1 , − 1 , 1 ) × ( − 1 , 1 , 1 )) ∣ ∣
The scalar triple product can be calculated using the formula;
𝐚 . ( 𝐛 × 𝐜 ) = ∣ a i a j a k b i b j b k c i c j c k ∣ 𝐚.(𝐛 × 𝐜) = \begin{vmatrix}
ai & aj & ak \\
bi & bj & bk \\
ci & cj & ck
\end{vmatrix} a . ( b × c ) = ∣ ∣ ai bi c i aj bj c j ak bk c k ∣ ∣
= ∣ 1 1 − 1 1 − 1 1 − 1 1 1 ∣ =\begin{vmatrix}
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{vmatrix} = ∣ ∣ 1 1 − 1 1 − 1 1 − 1 1 1 ∣ ∣
= − 1 ( 1 × 1 − ( − 1 ) × ( − 1 ) ) − 1 ( 1 × 1 − ( − 1 ) × 1 ) + 1 ( 1 × ( − 1 ) − 1 × 1 ) = -1(1×1-(-1)×(-1))-1(1×1-(-1)×1)+1(1×(-1)-1×1) = − 1 ( 1 × 1 − ( − 1 ) × ( − 1 )) − 1 ( 1 × 1 − ( − 1 ) × 1 ) + 1 ( 1 × ( − 1 ) − 1 × 1 )
= − 1 ( 1 − 1 ) − 1 ( 1 + 1 ) + 1 ( − 1 − 1 ) =-1(1-1)-1(1+1)+1(-1-1) = − 1 ( 1 − 1 ) − 1 ( 1 + 1 ) + 1 ( − 1 − 1 )
= − 1 ( 0 ) − 1 ( 2 ) + 1 ( − 2 ) =-1(0)-1(2)+1(-2) = − 1 ( 0 ) − 1 ( 2 ) + 1 ( − 2 )
= 0 − 2 − 2 =0-2-2 = 0 − 2 − 2
= − 4 = -4 = − 4
Since we want the modulus, i.e. the absolute value of the result, we therefore conclude that the parallelpiped has volume 4 cubic units .
Comments