Question #132574
4. What is the distance between the point (1,2,4) and the plane 3x+ 2y+ 6z= 5?

5. What is the distance between the parallel planes ax+by+cz=d1 and ax+by+cz=d2?
You may wish to try picking a point on one plane that you can specify exactly and
working out the distance from that point to the other plane.
1
Expert's answer
2020-09-16T18:39:54-0400

(4)Find the distance between(1, 2, 4)and the plane3x + 2y + 6z = 5.The distance between(x1,y1,z1)and the planeax+by+cz+d=0is given byD=ax1+by1+cz1+da2+b2+c2The distance between(1,2,4)and3x+2y+6z=5isD=3(1)+2(2)+6(4)532+22+62=3+4+2459+4+36=2673.714(3 d.p)(5)What is the distance betweenthe parallel planesax+by+cz=d1andax+by+cz=d2?LetX(x1,y1,z1)be anarbitrary point away fromthe two planes.If the distance between the pointXand the firstplane is given byD1and that between thepointXand the secondplane is given byD2.The distance between thetwo plates is given by D=D2D1D1=ax1+by1+cz1d1a2+b2+c2andD2=ax1+by1+cz1d2a2+b2+c2D=D2D1=ax1+by1+cz1d2a2+b2+c2ax1+by1+cz1d1a2+b2+c2=(ax1+by1+cz1)(ax1+by1+cz1)+d1d2a2+b2+c2=d1d2a2+b2+c2Ifax+by+cz=d1andax+by+cz=d2are plane equations, then thedistanceDbetween the planescan be found usingD=d1d2a2+b2+c2(4) \textbf{\textit{Find the distance between}}\hspace{0.1cm} \textit{(1, 2, 4)} \\\hspace{0.1cm} \textbf{\textit{and the plane}} \hspace{0.1cm} \textit{3x + 2y + 6z = 5}.\\ \textrm{The distance between} \hspace{0.1cm} (x_1, y_1, z_1) \hspace{0.1cm}\\ \textrm{and the plane} \hspace{0.1cm} ax + by + cz + d = 0\\\textrm{is given by}\hspace{0.1cm} D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}\\ \therefore \textsf{The distance between} \hspace{0.1cm} (1, 2, 4)\hspace{0.1cm} \textsf{and}\hspace{0.1cm}\\3x + 2y + 6z = 5 \hspace{0.1cm}\textsf{is}\hspace{0.1cm} \\ D = \frac{|3(1) + 2(2) + 6(4) - 5|}{\sqrt{3^2 + 2^2 + 6^2}} = \frac{|3 + 4 + 24 - 5|}{\sqrt{9 + 4 + 36}} =\frac{26}{7} \approx 3.714 \hspace{0.1cm}\textit{(3 d.p)} \\ (5) \textbf{\textit{What is the distance between}}\\\textbf{\textit{the parallel planes}}\\ ax + by + cz = d_1 \hspace{0.1cm} \textbf{\textit{and}}\\ax + by + cz = d_2?\\ \textrm{Let} \hspace{0.1cm}X(x_1, y_1, z_1) \hspace{0.1cm} \textrm{be an}\\ \textrm{arbitrary point away from} \\\textrm{the two planes}. \\\textrm{If the distance between}\\\textrm{ the point}\hspace{0.1cm} X \hspace{0.1cm} \textrm{and the first} \\\textrm{plane is given by} \hspace{0.1cm}D_1\\ \textrm{and that between the} \\\textrm{point}\hspace{0.1cm}X\hspace{0.1cm} \textrm{and the second}\\ \textrm{plane is given by}\hspace{0.1cm} D_2. \\ \textrm{The distance between the}\\\textrm{two plates is given by } \hspace{0.1cm} D = D_2 - D_1 \\ D_1 = \frac{|ax_1 + by_1 + cz_1 - d_1|}{\sqrt{a^2 + b^2 + c^2}} \hspace{0.1cm} \textrm{and}\\ \hspace{0.1cm} D_2 = \frac{|ax_1 + by_1 + cz_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}\\ D = D_2 - D_1 = \frac{|ax_1 + by_1 + cz_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} - \\\frac{|ax_1 + by_1 + cz_1 - d_1|}{\sqrt{a^2 + b^2 + c^2}} = \\\frac{|(ax_1 + by_1 + cz_1) - (ax_1 + by_1 + cz_1) + d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} \\=\frac{| d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}\\ \therefore \hspace{0.1cm} \textrm{If} \hspace{0.1cm}ax + by + cz = d_1 \hspace{0.1cm} \textrm{and} \\\hspace{0.1cm} ax + by + cz = d_2 \\\hspace{0.1cm} \textrm{are plane equations, then the} \\\hspace{0.1cm} \textrm{distance} \hspace{0.1cm}D\hspace{0.1cm} \textrm{between the planes}\\ \textrm{can be found using} \\D = \frac{| d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS