"a)(cos(\u03c0\/4) + i sin(\u03c0\/4))(cos(3\u03c0\/4) + isin (3\u03c0\/4))=\n \u0441os(\\pi\/4)*cos(3\\pi\/4) + cos(\\pi\/4)*isin(3\\pi\/4) \n+ isin(\\pi\/4)*cos(3\\pi\/4)+isin(\\pi\/4)*isin(3\\pi\/4)=\n\n0.5*(cos(-\\pi\/2)+cos(\\pi)) + cos(\\pi\/4)*isin(3\\pi\/4) \n+ isin(\\pi\/4)*cos(3\\pi\/4) -0.5(cos(-\\pi\/2)-cos(\\pi))=\n\n0.5(-1) + i*0.5(sin(\\pi) +sin(\\pi\/2)) +i*0.5(sin(\\pi) +sin(-\\pi\/2)) - 0.5*1=\n\n= -1 + i*0.5 - i*0.5= -1 ;"
"b) (cos(\u03c0\/4) + i sin(\u03c0\/4))^2 \/ (cos(\u03c0\/6) + isin(\u03c0\/6))=(cos^2 (\\pi\/4)+isin(\\pi\/2)+ I^2sin^2 (\\pi\/4))\/(cos(\u03c0\/6) + isin(\u03c0\/6))=\n\n(0.5 + i - 0.5)\/(cos(\u03c0\/6) + isin(\u03c0\/6))=\n\n i *(cos(\u03c0\/6) - isin(\u03c0\/6))\/(cos(\u03c0\/6) - isin(\u03c0\/6))*(cos(\u03c0\/6) + isin(\u03c0\/6))=\n\n i* (cos(\u03c0\/6) - isin(\u03c0\/6))\/(cos^2 (\\pi\/6) - i^2sin^2(\\pi\/6)=\n\ni*(cos(\u03c0\/6) - isin(\u03c0\/6))\/(0.75 +0.25)= i*(cos(\u03c0\/6) - isin(\u03c0\/6))=0.5+ (\\sqrt3\/2)i"
Comments
Leave a comment