Question #117230
Determine the complex number z which satisfies the equations |z + 3i| = |z + 5 − 2i| and |z − 4i| = |z + 2i| simultaneously.
1
Expert's answer
2020-05-20T17:39:25-0400

{z+3i=z+52iz4i=z+2i\begin{cases} | z+3i| = | z+5-2i| \\ | z - 4i | = | z + 2i | \end{cases}

z=x+iyz=x+iy

x+iy+3i=x+iy+52i|x+iy+3i| =|x+iy+5-2i|

x2+(y+3)2=(x+5)2+(y2)2\sqrt{x^2+(y+3)^2}=\sqrt{(x+5)^2+(y-2)^2}

x2+y2+6y+9=x2+10x+25+y24y+4x^2+y^2+6y+9=x^2+10x+25+y^2-4y+4

10y=10x+20    y=x+210y=10x+20\implies y=x+2


z4i=z+2i| z - 4i | = | z + 2i |

 x+iy4i=x+iy+2i|x+iy-4i| =|x+iy+2i|

x2+(y4)2=(x2+(y+2)2\sqrt{x^2+(y-4)^2}=\sqrt{(x^2+(y+2)^2}

x2+y28y+16=x2+y2+4y+4x^2+y^2-8y+16=x^2+y^2+4y+4

8y+16=4y+4    12y=12    y=1-8y+16=4y+4\implies12y=12\implies y=1

{y=x+2y=1\begin{cases} y=x+2 \\ y=1 \end{cases}

x=1x=-1    y=1y=1

z=i1z=i-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS