{∣z+3i∣=∣z+5−2i∣∣z−4i∣=∣z+2i∣\begin{cases} | z+3i| = | z+5-2i| \\ | z - 4i | = | z + 2i | \end{cases}{∣z+3i∣=∣z+5−2i∣∣z−4i∣=∣z+2i∣
z=x+iyz=x+iyz=x+iy
∣x+iy+3i∣=∣x+iy+5−2i∣|x+iy+3i| =|x+iy+5-2i|∣x+iy+3i∣=∣x+iy+5−2i∣
x2+(y+3)2=(x+5)2+(y−2)2\sqrt{x^2+(y+3)^2}=\sqrt{(x+5)^2+(y-2)^2}x2+(y+3)2=(x+5)2+(y−2)2
x2+y2+6y+9=x2+10x+25+y2−4y+4x^2+y^2+6y+9=x^2+10x+25+y^2-4y+4x2+y2+6y+9=x2+10x+25+y2−4y+4
10y=10x+20 ⟹ y=x+210y=10x+20\implies y=x+210y=10x+20⟹y=x+2
∣z−4i∣=∣z+2i∣| z - 4i | = | z + 2i |∣z−4i∣=∣z+2i∣
∣x+iy−4i∣=∣x+iy+2i∣|x+iy-4i| =|x+iy+2i|∣x+iy−4i∣=∣x+iy+2i∣
x2+(y−4)2=(x2+(y+2)2\sqrt{x^2+(y-4)^2}=\sqrt{(x^2+(y+2)^2}x2+(y−4)2=(x2+(y+2)2
x2+y2−8y+16=x2+y2+4y+4x^2+y^2-8y+16=x^2+y^2+4y+4x2+y2−8y+16=x2+y2+4y+4
−8y+16=4y+4 ⟹ 12y=12 ⟹ y=1-8y+16=4y+4\implies12y=12\implies y=1−8y+16=4y+4⟹12y=12⟹y=1
{y=x+2y=1\begin{cases} y=x+2 \\ y=1 \end{cases}{y=x+2y=1
x=−1x=-1x=−1 y=1y=1y=1
z=i−1z=i-1z=i−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments