Equation z4 +z3 +z−1 = 0 can be written after re-arranging the terms
=> (z4-1) +z(z2+1)=0
=> (z2-1)(z2+1)+z(z2+1)=0
=> (z2+1) (z2+z-1) =0
=> So roots of z2 +1 =0 are -i and i;
roots of (z2 +z-1) =0 are "(-1+\\sqrt{\\smash[b]{5}})\/2" and "(-1-\\sqrt{\\smash[b]{5}})\/2".
hence other 3 roots are -i, "(-1+\\sqrt{\\smash[b]{5}})\/2" and "(-1-\\sqrt{\\smash[b]{5}})\/2" .
Comments
Leave a comment