(a). (cos π/4 + isin π/4)(cos 3π/4 + isin 3π/4)=( "\\sqrt{2}"/2+i"\\sqrt{2}"/2)(- "\\sqrt{2}"/2+i"\\sqrt{2}"/2)= -2/4+i*2/4-i*2/4+i2*2/4=-1/2+i2*1/2= -1/2 -1/2=-2/2=-1
(b). (cos π/4 + isin π/4)2(cos π/6 + isin π/6)= ( "\\sqrt{2}"/2+ i"\\sqrt{2}"/2)*2*("\\sqrt{3}"/2 + i/2)=("\\sqrt{2}"/2+ i"\\sqrt{2}"/2)("\\sqrt{3}"+i)= "\\sqrt{6}"/2 + i*"\\sqrt{2}"/2 + i*"\\sqrt{6}"/2 + i2*"\\sqrt{2}"/2="\\sqrt{6}"/2 - "\\sqrt{2}"/2 + i*"\\sqrt{2}"/2 + i*"\\sqrt{6}"/2= ("\\sqrt{2}"("\\sqrt{3}" -1) + "\\sqrt{2}"(1+"\\sqrt{3}" ))/2= ("\\sqrt{2}" (3-1))/2= 2"\\sqrt{2}"/2 = "\\sqrt{2}"
Answer: (a). (cos π/4 + isin π/4)(cos 3π/4 + isin 3π/4)=-1, (b). (cos π/4 + isin π/4)2(cos π/6 + isin π/6)="\\sqrt{2}"
Comments
Leave a comment