Question #117185
Simplify the following expressions:
(a). (cos π/4 + isin π/4)(cos 3π/4 + isin 3π/4), (b). (cos π/4 + isin π/4)2
(cos π/6 + isin π/6) .
1
Expert's answer
2020-05-20T19:59:32-0400


(a). (cos π/4 + isin π/4)(cos 3π/4 + isin 3π/4)=( 2\sqrt{2}/2+i2\sqrt{2}/2)(- 2\sqrt{2}/2+i2\sqrt{2}/2)= -2/4+i*2/4-i*2/4+i2*2/4=-1/2+i2*1/2= -1/2 -1/2=-2/2=-1

(b). (cos π/4 + isin π/4)2(cos π/6 + isin π/6)= ( 2\sqrt{2}/2+ i2\sqrt{2}/2)*2*(3\sqrt{3}/2 + i/2)=(2\sqrt{2}/2+ i2\sqrt{2}/2)(3\sqrt{3}+i)= 6\sqrt{6}/2 + i*2\sqrt{2}/2 + i*6\sqrt{6}/2 + i2*2\sqrt{2}/2=6\sqrt{6}/2 - 2\sqrt{2}/2 + i*2\sqrt{2}/2 + i*6\sqrt{6}/2= (2\sqrt{2}(3\sqrt{3} -1) + 2\sqrt{2}(1+3\sqrt{3} ))/2= (2\sqrt{2} (3-1))/2= 22\sqrt{2}/2 = 2\sqrt{2}

Answer: (a). (cos π/4 + isin π/4)(cos 3π/4 + isin 3π/4)=-1, (b). (cos π/4 + isin π/4)2(cos π/6 + isin π/6)=2\sqrt{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS