Given, z = 1 + i"\\sqrt{\\smash[b]{2}}"
p = z + 1/z
p = 1 + i"\\sqrt{\\smash[b]{2}}" + 1/(1 + i"\\sqrt{\\smash[b]{2}}" )
p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/((1 + i"\\sqrt{\\smash[b]{2}}" ) × (1 - i"\\sqrt{\\smash[b]{2}}"))
p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/(1² - (i"\\sqrt{\\smash[b]{2}}" )²)
p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/(1 + 2)
p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/3
p = (1 + 1/3) + i("\\sqrt{\\smash[b]{2}}" - ("\\sqrt{\\smash[b]{2}}" /3))
Therefore, p = (4/3) + i(2"\\sqrt{\\smash[b]{2}}" /3), where a = (4/3) and b = (2"\\sqrt{\\smash[b]{2}}" /3).
q = z - 1/z
q = 1 + i"\\sqrt{\\smash[b]{2}}" - (1/(1 + i"\\sqrt{\\smash[b]{2}}" ))
q = 1 + i"\\sqrt{\\smash[b]{2}}" - ((1 - i"\\sqrt{\\smash[b]{2}}" )/(1 + i"\\sqrt{\\smash[b]{2}}" )(1 - i"\\sqrt{\\smash[b]{2}}" ))
q = 1 + i"\\sqrt{\\smash[b]{2}}" - (1 - i"\\sqrt{\\smash[b]{2}}" )/3
q = (1 - (1/3)) + i("\\sqrt{\\smash[b]{2}}" + ("\\sqrt{\\smash[b]{2}}" /3))
Therefore, q = (2/3) + i(4"\\sqrt{\\smash[b]{2}}" /3), where a = (2/3) and b = (4"\\sqrt{\\smash[b]{2}}" /3).
Since P and Q represents the points of p and q,
"\\therefore" P = (4/3 , 2"\\sqrt{\\smash[b]{2}}" /3) & Q = (2/3 , 4"\\sqrt{\\smash[b]{2}}" /3)
Given that M is the midpoint of PQ.
Let M = (x,y).
Therefore,
x = ((4/3) + (2/3))/2 & y = ((2"\\sqrt{\\smash[b]{2}}" /3) + (4"\\sqrt{\\smash[b]{2}}" /3))/2
x = 3/3 = 1 & y = 3"\\sqrt{\\smash[b]{2}}" /3 = "\\sqrt{\\smash[b]{2}}"
M = (3/3 , "3\\sqrt{\\smash[b]{2}}\/3" )
Distance OM = "\\sqrt{\\smash[b]{(1 - 0)\u00b2 + (\\sqrt{\\smash[b]{2}} - 0)\u00b2}}"
OM = "\\sqrt{\\smash[b]{1 + 2}}"
OM = "\\sqrt{\\smash[b]{3}}"
Given that, OG = (2/3) × OM
Therefore, OG = 2"\\sqrt{\\smash[b]{3}}" /3
Let the slope of line OM be l, which is calculated as below :
l = "(\\sqrt{\\smash[b]{2}} -0)"/(1 - 0)
l = "\\sqrt{\\smash[b]{2}}"
Since, GM lies on OM, hence the slope of GM is the same as the slope of OM, i.e., l.
Let coordinates of G = (s,t)
Slope of GM = l
(t - "\\sqrt{\\smash[b]{2}}" )/(s - 1) = "\\sqrt{\\smash[b]{2}}\/1"
(t - "\\sqrt{\\smash[b]{2}}" ) = "\\sqrt{\\smash[b]{2}}" & (s - 1) = 1
t = 2"\\sqrt{\\smash[b]{2}}" & s = 2
Since GM is smaller than OM and it lies on OM and not outside it, hence we multiply the two coordinates by 1/3 to bring it to scale.
Therefore, t = "2\\sqrt{\\smash[b]{2}}\/3" & s = 2/3.
i.e., G = (2/3 , "2\\sqrt{\\smash[b]{2}}\/3" )
Distance PG = "\\sqrt{\\smash[b]{((4\/3) - (2\/3))\u00b2 + (2\\sqrt{\\smash[b]{2}}\/3 - 2\\sqrt{\\smash[b]{2}}\/3)\u00b2 }}"PG = "\\sqrt{\\smash[b]{(2\/3)\u00b2}}"
PG = 2/3
Distance QG = "\\sqrt{\\smash[b]{(2\/3 - 2\/3)\u00b2 + ((4\\sqrt{\\smash[b]{2}}\/3) - (2\\sqrt{\\smash[b]{2}}\/3))\u00b2}}" QG = "\\sqrt{\\smash[b]{(2\\sqrt{\\smash[b]{2}}\/3)\u00b2}}"
QG = "2\\sqrt{\\smash[b]{2}}\/3"
Distance PQ = "\\sqrt{\\smash[b]{((2\\sqrt{\\smash[b]{2}}\/3) - (4\\sqrt{\\smash[b]{2}}\/3))\u00b2 + ((4\/3) - (2\/3))\u00b2 }}" PQ = "\\sqrt{\\smash[b]{(8\/9) + (4\/9)}}"
PQ = "\\sqrt{\\smash[b]{12\/9}} = 2\\sqrt{\\smash[b]{3}}\/3"
PG² + QG² = (2/3)² + ("2\\sqrt{\\smash[b]{2}}\/3" )²
PG² + QG² = (4/9) + (8/9) = 12/9
PG² + QG² = "(2\\sqrt{\\smash[b]{3}}\/3)\u00b2"
PG² + QG² = PQ²
The above equation is the equation of pythagoras theorem for a right angled triangle, i.e., a² + b² = c², where c is the hypotenuse and a & b are the sides making the right angle.
Therefore, PGQ is a right angled triangle with PQ as the hypotenuse. The angle opposite to the hypotenuse is the right angle.
Therefore, angle PGQ is a right angle.
Comments
Dear Julia Oduro, please use the panel for submitting new questions.
8. Simplify the following expressions a. (Cos 45+isin45)(cos3(45)+sin3(45)) b. (Cos45+isin45)²÷(Cos30+isin30)
Leave a comment