z4+z3+z−1=0z^4 + z^3 + z − 1 = 0z4+z3+z−1=0
z(z2+1)+z4−1=0z(z^2+1)+z^4-1=0z(z2+1)+z4−1=0
z(z2+1)+(z2−1)(z2+1)=0z(z^2+1)+(z^2-1)(z^2+1)=0z(z2+1)+(z2−1)(z2+1)=0
(z2+1)(z+z2−1)=0(z^2+1)(z+z^2-1)=0(z2+1)(z+z2−1)=0
z2+1=0,z+z2−1=0z^2+1=0, z+z^2-1=0z2+1=0,z+z2−1=0
z2+1=0z^2+1=0z2+1=0
z2=−1z^2=-1z2=−1
z1=iz_1=iz1=i z2=−iz_2=-iz2=−i
z+z2−1=0z+z^2-1=0z+z2−1=0
D=1+4=5D=1+4=5D=1+4=5
z3=−1+52z_3=\frac{-1+\sqrt{5}}{2}z3=2−1+5 z4=−1−52z_4=\frac{-1-\sqrt{5}}{2}z4=2−1−5
Answer
The three other roots are z2,z3,z4z_2,z_3,z_4z2,z3,z4 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments