Find the modulus and the principal argument of each of the given complex numbers.
(a) 3 − 4i, (b) −2 + i, (c) 1
1 + i
√
3
, (d) 7 − i
−4 − 3i
,
(e) 5(cos π/3 + isin π/3), (f) cos 2π/3 − sin 2π/3.
1
Expert's answer
2020-06-03T18:57:16-0400
We will use the notation z=a+ib for given complex number. So, modulus of z is
∣z∣=a2+b2 and principal argument of z is arg(z)=tan−1(ab)∈(−π,π).
a) Given z=3−4i
Hence, a=3,b=−4.
⟹∣z∣=32+(−4)2=5
And, since z lies in fourth quadrant so arg(z)=−tan−1(34).
b) Given z=−2+i .
So, ∣z∣=22+12=5
and z lies in 2nd quadrants so arg(z)=π−tan−1(21).
c) Given z=1+i3 .
Hence, ∣z∣=12+3=4=2
and z lies in first quadrant so arg(z)=tan−1(3)=3π
d) Given z=−4−3i.
Hence, ∣z∣=42+32=25=5
and z lies in 3rd quadrants, so arg(z)=π+tan−1(43).
e) Given z=5(cos(π/3)+isin(π/3))
Hence, ∣z∣=52(cos2(π/3)+sin2(π/3))=5
And arg(z)=tan−1(5cos(π/3)5sin(π/3))=tan−1(tan(π/3))=π/3 .
f) Given z=cos(2π/3)−sin(2π/3)=−cos(π/3)−sin(π/3)=−21−23.
So, ∣z∣=(cos(2π/3)−sin(2π/3))2=cos(2π/3)−sin(2π/3)=−(21+3)
and given z lies on negative x−axis, hence arg(z)=tan−1(0)=−π .
Comments
Leave a comment