We will use the notation "z = a+ib" for given complex number. So, modulus of "z" is
"|z| = \\sqrt{a^2+b^2}" and principal argument of "z" is "arg(z) = tan^{-1}(\\frac{b}{a}) \\in (-\\pi,\\pi)."
a) Given "z = 3-4i"
Hence, "a = 3, b = -4".
"\\implies |z| = \\sqrt{3^2+(-4)^2} = 5"
And, since z lies in fourth quadrant so "arg(z) = - tan^{-1} (\\frac{4}{3})".
b) Given "z = -2+i" .
So, "|z| = \\sqrt{2^2+1^2} = \\sqrt{5}"
and z lies in 2nd quadrants so "arg(z) = \\pi - tan^{-1}(\\frac{1}{2})".
c) Given "z = 1+i\\sqrt{3}" .
Hence, "|z| = \\sqrt{1^2+3} = \\sqrt{4} = 2"
and z lies in first quadrant so "arg(z) = tan^{-1}(\\sqrt{3}) = \\frac{\\pi}{3}"
d) Given "z = -4-3i".
Hence, "|z| = \\sqrt{4^2+3^2} = \\sqrt{25} = 5"
and z lies in 3rd quadrants, so "arg(z) = \\pi+tan^{-1}(\\frac{3}{4})".
e) Given "z = 5(cos (\u03c0\/3) + isin( \u03c0\/3))"
Hence, "|z| = \\sqrt{5^2(cos^2(\\pi\/3)+sin^2(\\pi\/3))} = 5"
And "arg(z) = tan^{-1}(\\frac{5sin(\\pi\/3)}{5cos(\\pi\/3)}) = tan^{-1} (tan(\\pi\/3)) = \\pi\/3" .
f) Given "z = cos(2\\pi\/3) - sin(2\\pi\/3) = -cos(\\pi\/3)-sin(\\pi\/3) = - \\frac{1}{2} - \\frac{\\sqrt{3}}{2}".
So, "|z| = \\sqrt{( cos(2\\pi\/3) - sin(2\\pi\/3))^2} = cos(2\\pi\/3) - sin(2\\pi\/3) = - (\\frac{1+\\sqrt{3}}{2})"
and given z lies on negative "x-"axis, hence "arg(z) = tan^{-1}(0) = -\\pi" .
Comments
Leave a comment