Question #116906
Given that 3 + i is a root of the equation z^3 − 3z^2 − 8z + 30= 0, find the remaining roots.
1
Expert's answer
2020-05-19T08:58:49-0400

z33z28z+30=0z^3 − 3z^2 − 8z + 30= 0

(z+3)(z26z+10)=0(z+3)(z^2 − 6z + 10)= 0

z+3=0z+3=0 z26z+10=0z^2-6z+10=0

z26z+10=0z^2-6z+10=0

D=(6)24110=4D= (-6)^2 - 4*1*10=-4

z1=6+D21=6+2i2=3+iz_1=\frac{6+\sqrt{D}}{2*1}=\frac{6+2i}{2}=3+i

z2=6D21=62i2=3iz_2=\frac{6-\sqrt{D}}{2*1}=\frac{6-2i}{2}=3-i


z+3=0z+3=0

z3=3z_3=-3


Answer:

z1=3+i,z2=3i,z3=3z_1=3+i, z_2=3-i, z_3=-3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS