Give z = i is a root of the equation z⁴ + z³ + z - 1 = 0.
Hence, z - i = 0 is a factor of the given quartic equation.
Let (z - i)(az³ + bz² + cz + d) = z⁴ + z³ + z - 1,
Where a, b, c and d are coefficients.
(z - i)(az³ + bz² + cz + d) = z⁴ + z³ + z - 1 .... eq. (1)
az⁴ + bz³ + cz² + dz - iaz³ - ibz² - icz - id = z⁴ + z³ + z - 1
az⁴ + z³(b - ia) + z²(c - ib) + z(d - ic) - id = z⁴ + z³ + z - 1
Equating the coefficients of LHS and RHS, we get :
a = 1
b - ia = 1
i.e., b - i = 1
"\\therefore" b = 1 + i
c - ib = 0
c - i(1 + i) = 0
c - i + 1 = 0
"\\therefore" c = i - 1
d - ic = 1
d - i(i - 1) = 1
d + 1 + i = 1
d = 1 - 1 - i
"\\therefore" d = -i
Substituting the above values of a, b, c and d in equation (1) :
(z - i)(z³ + z²(1 + i) + z(i - 1) - i) = z⁴ + z³ + z - 1
The remaining 3 roots can be found from equating (z³ + z²(1 + i) + z(i - 1) - i) = 0.
z³ + z²(1 + i) + z(i - 1) - i = 0
(z³ + z² - z) + i(z² + z - 1) = 0
z (z² + z - 1) + i(z² + z - 1) = 0
(z² + z - 1)(z + i) = 0
i.e., z² + z - 1 = 0 & z + i = 0
z² + z - 1 = 0 & z = - i
z² + z - 1 = 0
Here, a = 1, b = 1, c = -1.
b² - 4ac = 1 - 4(1)(-1) = 1 + 4 = 5
Therefore,
z = (-b + "\\sqrt{\\smash[b]{b\u00b2 - 4ac}}" )/2a or z = (-b - "\\sqrt{\\smash[b]{b\u00b2 - 4ac}}" )/2a
i.e., z = (-1 + "\\sqrt{\\smash[b]{5}}" )/2 or z = (-1 - "\\sqrt{\\smash[b]{5}}" )/2
"\\therefore" The three other roots of the given equation are :
z = -i
z = (-1 + "\\sqrt{\\smash[b]{5}}" )/2
z = (-1 - "\\sqrt{\\smash[b]{5}}" )/2
Comments
Leave a comment