Given, z + 3i = z + 5 - 2i ... eq. (1)
& z - 4i = z + 2i ... eq. (2)
Let z = x + iy.
Substituting the above value of z in equation (1) :
x + iy + 3i = x + iy + 5 - 2i
x + i(y + 3) = (x + 5) + i(y - 2)
=
Squaring the above equation, we get,
x² + (y + 3)² = (x + 5)² + (y - 2)²
x² + y² + 9 + 6y = x² + 25 + 10x + y² + 4 - 4y
i.e., x² + y² + 9 + 6y - x² - 25 - 10x - y² - 4 + 4y = 0
y(6 + 4) - 10x + (9 - 25 - 4) = 0
10y - 10x - 20 = 0
i.e., 10y - 10x = 20 ... eq. (3)
Substituting z = x + iy in equation (2) :
x + iy - 4i = x + iy + 2i
x + i(y - 4) = x + i(y+2)
=
Squaring the above equation, we get,
x² + (y - 4)² = x² + (y + 2)²
x² + y² + 16 - 8y = x² + y² + 4 + 4y
i.e., x² + y² + 16 - 8y - x² - y² - 4 - 4y = 0
16 - 4 + y(-8 - 4) = 0
12 - 12y = 0
i.e., 12y = 12
y = 1
Substituting the above value of y = 1 in equation (3) :
10y - 10x = 20
10(1) - 10x = 20
10 - 10x = 20
i.e., 10x = 10 - 20 = - 10
x = -1
Therefore, z = -1 + i
Comments