We are given that az3+bz2+cz+d=0 has three roots in arithmetic progression
α−β,α,α+β.
We know that
z1+z2+z3=−abz1z2z3=−adz1z2+z2z3+z1z3=ac Then
α−β+α+α+β=−ab
(α−β)(α)(α+β)=−ad
(α−β)(α)+(α)(α+β)+(α−β)(α+β)=ac We have
α=−3ab
α(α2−β2)=−ad
3α2−β2=ac
β2=3α2−ac=3a2b2−ac Then
−3ab(9a2b2−3a2b2+ac)=−ad
9a2b(2b2−9ac)=−3d
(2b2−9ac)b+27a2d=0
Comments