Question #116896
4. If the roots of the cubic az
+ bz + cz + d = 0 form an arithmetic progression α − β,
2
2
α, α + β, prove that (2b
− 9ac)b + 27a
d = 0.
1
Expert's answer
2020-05-24T16:20:31-0400

We are given that az3+bz2+cz+d=0az^3+bz^2+cz+d=0  has three roots in arithmetic progression

αβ,α,α+β.\alpha-\beta,\alpha,\alpha+\beta.

We know that


z1+z2+z3=baz_1+z_2+z_3=-{b \over a}z1z2z3=daz_1z_2z_3=-{d \over a}z1z2+z2z3+z1z3=caz_1z_2+z_2z_3+z_1z_3={c \over a}

Then


αβ+α+α+β=ba\alpha-\beta+\alpha+\alpha+\beta=-{b \over a}

(αβ)(α)(α+β)=da(\alpha-\beta)(\alpha)(\alpha+\beta)=-{d \over a}

(αβ)(α)+(α)(α+β)+(αβ)(α+β)=ca(\alpha-\beta)(\alpha)+(\alpha)(\alpha+\beta)+(\alpha-\beta)(\alpha+\beta)={c \over a}

We have


α=b3a\alpha=-{b \over 3a}

α(α2β2)=da\alpha(\alpha^2-\beta^2)=-{d \over a}

3α2β2=ca3\alpha^2-\beta^2={c \over a}

β2=3α2ca=b23a2ca\beta^2=3\alpha^2-{c \over a}={b^2 \over 3a^2}-{c \over a}

Then


b3a(b29a2b23a2+ca)=da-{b \over 3a}({b^2 \over 9a^2}-{b^2 \over 3a^2}+{c \over a})=-{d \over a}

b(2b29ac)9a2=3d{b(2b^2-9ac )\over 9a^2}=-3d

(2b29ac)b+27a2d=0(2b^2-9ac )b+27a^2d=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS