We are given that "az^3+bz^2+cz+d=0" has three roots in arithmetic progression
"\\alpha-\\beta,\\alpha,\\alpha+\\beta."
We know that
Then
"(\\alpha-\\beta)(\\alpha)(\\alpha+\\beta)=-{d \\over a}"
"(\\alpha-\\beta)(\\alpha)+(\\alpha)(\\alpha+\\beta)+(\\alpha-\\beta)(\\alpha+\\beta)={c \\over a}"
We have
"\\alpha(\\alpha^2-\\beta^2)=-{d \\over a}"
"3\\alpha^2-\\beta^2={c \\over a}"
"\\beta^2=3\\alpha^2-{c \\over a}={b^2 \\over 3a^2}-{c \\over a}"
Then
"{b(2b^2-9ac )\\over 9a^2}=-3d"
"(2b^2-9ac )b+27a^2d=0"
Comments
Leave a comment