Answer to Question #116902 in Algebra for kay

Question #116902
Given that w denotes either one of the non-real roots of the equation z^3 = 1, show
that
(a) 1 + w + w^2 = 0, and
(b) the other non-real root is w^2
. Show that the non-real roots of the equation

((1 − u)÷u)^3
can be expressed in the form Aw and Bw^2
, where A and B are real
numbers, find A and B.
1
Expert's answer
2020-05-19T18:24:16-0400

z3=1z=131=cos0+isin013=cos0+2πk3+isin0+2πk3,k=0,1,2w0=cos0+isin0=1w1=cos2π3+isin2π3=12+i32w2=cos4π3+isin4π3=12i32z^3=1\\ z=\sqrt[3]{1}\\ 1=\cos0+i\sin0\\ \sqrt[3]{1}=\cos\frac{0+2\pi k}{3}+i\sin\frac{0+2\pi k}{3}, k=0,1,2\\ w_0=\cos0+i\sin0=1\\ w_1=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}=-\frac{1}{2}+i\frac{\sqrt3}{2}\\ w_2=\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}=-\frac{1}{2}-i\frac{\sqrt3}{2}\\

a)

1+w1+w12=112+i32++(12+i32)2=12+i32++14i3234=01+w2+w22=112i32++(12i32)2=12i32++14i3234=01+w_1+w^2_1=1-\frac{1}{2}+i\frac{\sqrt3}{2}+\\ +(-\frac{1}{2}+i\frac{\sqrt3}{2})^2=\frac{1}{2}+i\frac{\sqrt3}{2}+\\ +\frac{1}{4}-i\frac{\sqrt3}{2}-\frac{3}{4}=0\\ 1+w_2+w^2_2=1-\frac{1}{2}-i\frac{\sqrt3}{2}+\\ +(-\frac{1}{2}-i\frac{\sqrt3}{2})^2=\frac{1}{2}-i\frac{\sqrt3}{2}+\\ +\frac{1}{4}-i\frac{\sqrt3}{2}-\frac{3}{4}=0

b)

w12=(12+i32)2=14i3234==12i32=w2w22=(12i32)2=14+i3234==12+i32=w1w_1^2=(-\frac{1}{2}+i\frac{\sqrt3}{2})^2= \frac{1}{4}-i\frac{\sqrt3}{2}-\frac{3}{4}=\\ =-\frac{1}{2}-i\frac{\sqrt3}{2}=w_2\\ w_2^2=(-\frac{1}{2}-i\frac{\sqrt3}{2})^2= \frac{1}{4}+i\frac{\sqrt3}{2}-\frac{3}{4}=\\ =-\frac{1}{2}+i\frac{\sqrt3}{2}=w_1


(1uu)3=1u=Aw1=A(12+i32)1uu=131uu=w11Aw1Aw1=w11Aw1=Aw12A(w1+w12)=1w12=(12+i32)2==14i3234==12+i32=w2A(w1+w2)=1A(1)=1A=1(\frac{1-u}{u})^3=1\\ u=Aw_1=A(-\frac{1}{2}+i\frac{\sqrt3}{2})\\ \frac{1-u}{u}=\sqrt[3]{1}\\ \frac{1-u}{u}=w_1\\ \frac{1-Aw_1}{Aw_1}=w_1\\ 1-Aw_1=Aw_1^2\\ A(w_1+w_1^2)=1\\ w_1^2=(-\frac{1}{2}+i\frac{\sqrt3}{2})^2=\\ =\frac{1}{4}-i\frac{\sqrt3}{2}-\frac{3}{4}=\\ =-\frac{1}{2}+i\frac{\sqrt3}{2}=w_2\\ A(w_1+w_2)=1\\ A(-1)=1\\ A=-1

u=Bw2=B(12i32)1Bw2=Bw22B(w2+w1)=1B=1u=Bw_2=B(-\frac{1}{2}-i\frac{\sqrt3}{2})\\ 1-Bw_2=Bw_2^2\\ B(w_2+w_1)=1\\ B=-1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment