z 3 − α 3 = 0 ; z 3 − α 3 = ( z − α ) ( z 2 + α z + α 2 ) ; ⟹ ( z − α ) ( z 2 + α z + α 2 ) = 0 ; ⟹ z − α = 0 o r z 2 + α z + α 2 = 0 ; ⟹ z 1 = α ; D = α 2 − 4 α 2 = 3 α 2 ; z 2 = − α + 3 α 2 2 = α − 1 + i 3 2 ; z 3 = − α − 3 α 2 2 = α − 1 − i 3 2 z^3 −α^3 =0; \\
z^3-\alpha^3=(z-\alpha)(z^2+\alpha z+\alpha^2); \\
\implies (z-\alpha)(z^2+\alpha z+\alpha^2)=0; \\
\implies z-\alpha=0 \ or \ z^2+\alpha z+\alpha^2=0; \\
\implies z_1=\alpha; D=\alpha^2-4\alpha^2=3\alpha^2;
\\
z_2=\dfrac{-\alpha+\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1+i\sqrt{3}}{2};
z_3=\dfrac{-\alpha-\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1-i\sqrt{3}}{2} z 3 − α 3 = 0 ; z 3 − α 3 = ( z − α ) ( z 2 + α z + α 2 ) ; ⟹ ( z − α ) ( z 2 + α z + α 2 ) = 0 ; ⟹ z − α = 0 or z 2 + α z + α 2 = 0 ; ⟹ z 1 = α ; D = α 2 − 4 α 2 = 3 α 2 ; z 2 = 2 − α + 3 α 2 = α 2 − 1 + i 3 ; z 3 = 2 − α − 3 α 2 = α 2 − 1 − i 3 .
Thus roots of given equation are: α , α w , α w 2 \alpha, \alpha w , \alpha w^2 α , α w , α w 2 .
a) Given equation is z 3 − 27 = 0 z^3 - 27 =0 z 3 − 27 = 0 ;
By comparing with above equation we have α 3 = 27 ⟹ α = 3 \alpha^3 = 27 \implies \alpha = 3 α 3 = 27 ⟹ α = 3
So, roots of given equation are 3 , 3 ( − 1 + i 3 2 ) , 3 ( − 1 − i 3 2 ) 3, 3 (\dfrac{-1+i\sqrt{3}}{2}), 3(\dfrac{-1-i\sqrt{3}}{2}) 3 , 3 ( 2 − 1 + i 3 ) , 3 ( 2 − 1 − i 3 ) .
b) In this case α 3 = − 8 = ( − 2 ) 3 ⟹ α = − 2 \alpha^3 = - 8 = (-2)^3 \implies \alpha = -2 α 3 = − 8 = ( − 2 ) 3 ⟹ α = − 2
So, roots of given equation are − 2 , − 2 ( − 1 + i 3 2 ) , − 2 ( − 1 − i 3 2 ) -2, -2 (\dfrac{-1+i\sqrt{3}}{2}), -2(\dfrac{-1-i\sqrt{3}}{2}) − 2 , − 2 ( 2 − 1 + i 3 ) , − 2 ( 2 − 1 − i 3 ) .
c) In this case, α 3 = i = ( − i ) 3 ⟹ α = − i \alpha^3 = i = (-i)^3 \implies \alpha = -i α 3 = i = ( − i ) 3 ⟹ α = − i
So, roots of given equation are − i , − i ( − 1 + i 3 2 ) , − i ( − 1 − i 3 2 ) -i, -i (\dfrac{-1+i\sqrt{3}}{2}), -i(\dfrac{-1-i\sqrt{3}}{2}) − i , − i ( 2 − 1 + i 3 ) , − i ( 2 − 1 − i 3 )
Thus, roots in form of a+ib are − i , 3 + i 2 , − 3 + i 2 -i, \dfrac{\sqrt{3}+i}{2}, \dfrac{-\sqrt{3}+i}{2} − i , 2 3 + i , 2 − 3 + i .
Comments