"z^3 \u2212\u03b1^3 =0; \\\\\nz^3-\\alpha^3=(z-\\alpha)(z^2+\\alpha z+\\alpha^2); \\\\\n\\implies (z-\\alpha)(z^2+\\alpha z+\\alpha^2)=0; \\\\\n\n \\implies z-\\alpha=0 \\ or \\ z^2+\\alpha z+\\alpha^2=0; \\\\\n\n\\implies z_1=\\alpha; D=\\alpha^2-4\\alpha^2=3\\alpha^2;\n\\\\\n\nz_2=\\dfrac{-\\alpha+\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1+i\\sqrt{3}}{2};\n\nz_3=\\dfrac{-\\alpha-\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1-i\\sqrt{3}}{2}" .
Thus roots of given equation are: "\\alpha, \\alpha w , \\alpha w^2" .
a) Given equation is "z^3 - 27 =0" ;
By comparing with above equation we have "\\alpha^3 = 27 \\implies \\alpha = 3"
So, roots of given equation are "3, 3 (\\dfrac{-1+i\\sqrt{3}}{2}), 3(\\dfrac{-1-i\\sqrt{3}}{2})" .
b) In this case "\\alpha^3 = - 8 = (-2)^3 \\implies \\alpha = -2"
So, roots of given equation are "-2, -2 (\\dfrac{-1+i\\sqrt{3}}{2}), -2(\\dfrac{-1-i\\sqrt{3}}{2})" .
c) In this case, "\\alpha^3 = i = (-i)^3 \\implies \\alpha = -i"
So, roots of given equation are "-i, -i (\\dfrac{-1+i\\sqrt{3}}{2}), -i(\\dfrac{-1-i\\sqrt{3}}{2})"
Thus, roots in form of a+ib are "-i, \\dfrac{\\sqrt{3}+i}{2}, \\dfrac{-\\sqrt{3}+i}{2}" .
Comments
Leave a comment