Solution.
"z^3-\\alpha^3=0;"
"z^3-\\alpha^3=(z-\\alpha)(z^2+\\alpha z+\\alpha^2);"
"(z-\\alpha)(z^2+\\alpha z+\\alpha^2)=0;"
"z-\\alpha=0" or "z^2+\\alpha z+\\alpha^2=0;"
"z_1=\\alpha;" "D=\\alpha^2-4\\alpha^2=3\\alpha^2;"
"z_2=\\dfrac{-\\alpha+\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1+i\\sqrt{3}}{2};"
"z_3=\\dfrac{-\\alpha-\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1-i\\sqrt{3}}{2};"
Cube Root of Unity Value:
"\\omega_1=1" - real;
"\\omega_2= \\dfrac{-1+i\\sqrt{3}}{2}" - complex;
"\\omega_3= \\dfrac{-1-i\\sqrt{3}}{2}" - complex;
"z_1=\\alpha\\sdot\\omega_1=\\alpha\\sdot1=\\alpha;"
"z_2=\\alpha\\sdot\\omega_2=\\alpha \\dfrac{-1+i\\sqrt{3}}{2}=-\\dfrac{1}{2}\\alpha+i\\dfrac{\\alpha\\sqrt{3}}{2};"
"z_3=\\alpha\\sdot\\omega_3=\\alpha \\dfrac{-1-i\\sqrt{3}}{2}=-\\dfrac{1}{2}\\alpha-i\\dfrac{\\alpha\\sqrt{3}}{2};"
Answer: "z_1=\\alpha;"
"z_2=-\\dfrac{1}{2}\\alpha+i\\dfrac{\\alpha\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}\\alpha-i\\dfrac{\\alpha\\sqrt{3}}{2};"
Comments
Leave a comment