Question #117244
Express the roots of the equation z3 − α3 = 0 in terms of α and w, where w is a complex cube root of unity. Use your answer to find the roots of the following equations in the form a + ib.
1
Expert's answer
2020-05-20T19:38:34-0400

Solution.

z3α3=0;z^3-\alpha^3=0;

z3α3=(zα)(z2+αz+α2);z^3-\alpha^3=(z-\alpha)(z^2+\alpha z+\alpha^2);

(zα)(z2+αz+α2)=0;(z-\alpha)(z^2+\alpha z+\alpha^2)=0;

zα=0z-\alpha=0 or z2+αz+α2=0;z^2+\alpha z+\alpha^2=0;

z1=α;z_1=\alpha; D=α24α2=3α2;D=\alpha^2-4\alpha^2=3\alpha^2;

z2=α+3α22=α1+i32;z_2=\dfrac{-\alpha+\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1+i\sqrt{3}}{2};

z3=α3α22=α1i32;z_3=\dfrac{-\alpha-\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1-i\sqrt{3}}{2};

Cube Root of Unity Value:

ω1=1\omega_1=1 - real;

ω2=1+i32\omega_2= \dfrac{-1+i\sqrt{3}}{2} - complex;

ω3=1i32\omega_3= \dfrac{-1-i\sqrt{3}}{2} - complex;

z1=αω1=α1=α;z_1=\alpha\sdot\omega_1=\alpha\sdot1=\alpha;

z2=αω2=α1+i32=12α+iα32;z_2=\alpha\sdot\omega_2=\alpha \dfrac{-1+i\sqrt{3}}{2}=-\dfrac{1}{2}\alpha+i\dfrac{\alpha\sqrt{3}}{2};

z3=αω3=α1i32=12αiα32;z_3=\alpha\sdot\omega_3=\alpha \dfrac{-1-i\sqrt{3}}{2}=-\dfrac{1}{2}\alpha-i\dfrac{\alpha\sqrt{3}}{2};

Answer: z1=α;z_1=\alpha;

z2=12α+iα32;z_2=-\dfrac{1}{2}\alpha+i\dfrac{\alpha\sqrt{3}}{2};

z3=12αiα32;z_3=-\dfrac{1}{2}\alpha-i\dfrac{\alpha\sqrt{3}}{2};


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS