Solution.
"z3\n\n\u2212\u03b13\n\n=0;"
"z^3-\\alpha^3=(z-\\alpha)(z^2+\\alpha z+\\alpha^2);"
"(z-\\alpha)(z^2+\\alpha z+\\alpha^2)=0;"
"z\u2212\u03b1=0 orz^2+\\alpha z+\\alpha^2=0;"
"z_1=\\alpha;" "D=\\alpha^2-4\\alpha^2=3\\alpha^2" ;
"z_2=\\dfrac{-\\alpha+\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1+i\\sqrt{3}}{2};"
"z_3=\\dfrac{-\\alpha-\\sqrt{3\\alpha^2}}{2}=\\alpha \\dfrac{-1-i\\sqrt{3}}{2};"
Cube Root of Unity Value:
"\u03c91\n\n\u200b=1 - real;"
"\\omega_2= \\dfrac{-1+i\\sqrt{3}}{2}" - complex;
"\\omega_3= \\dfrac{-1-i\\sqrt{3}}{2}" - complex;
"\u200bz_1=\\alpha\\sdot\\omega_1=\\alpha\\sdot1=\\alpha;"
"z_2=\\alpha\\sdot\\omega_2=\\alpha \\dfrac{-1+i\\sqrt{3}}{2}=-\\dfrac{1}{2}\\alpha+i\\dfrac{\\alpha\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}\\alpha-i\\dfrac{\\alpha\\sqrt{3}}{2};"
a) "z^3-27=0;"
"z_1=3;"
"z_2=-\\dfrac{1}{2}\\sdot3+i\\dfrac{3\\sqrt{3}}{2}=-\\dfrac{3}{2}+i\\dfrac{3\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}\\sdot3-i\\dfrac{3\\sqrt{3}}{2}=-\\dfrac{3}{2}-i\\dfrac{3\\sqrt{3}}{2};"
b)"z^3+8=0;"
"z_1=-2;"
"z_2=-\\dfrac{1}{2}\\sdot(-2)+i\\dfrac{-2\\sqrt{3}}{2}=-\\dfrac{3}{2}-i\\dfrac{2\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}\\sdot(-2)-i\\dfrac{-2\\sqrt{3}}{2}=-\\dfrac{3}{2}+i\\dfrac{2\\sqrt{3}}{2};"
c)"z^3-i=0;"
"z_1=i;"
"z_2=-\\dfrac{1}{2}i+i\\dfrac{i\\sqrt{3}}{2}=-\\dfrac{1}{2}i-\\dfrac{\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}i-i\\dfrac{i\\sqrt{3}}{2}=-\\dfrac{1}{2}i+\\dfrac{\\sqrt{3}}{2};"
Answer: a) "z_1=3;"
"z_2=-\\dfrac{3}{2}+i\\dfrac{3\\sqrt{3}}{2};"
"z_3=-\\dfrac{3}{2}-i\\dfrac{3\\sqrt{3}}{2};"
b)"z_1=-2;"
"z_2=-\\dfrac{3}{2}-i\\dfrac{2\\sqrt{3}}{2};"
"z_3=-\\dfrac{3}{2}+i\\dfrac{2\\sqrt{3}}{2};"
c)"z_1=i;"
"z_2=-\\dfrac{1}{2}i-\\dfrac{\\sqrt{3}}{2};"
"z_3=-\\dfrac{1}{2}i+\\dfrac{\\sqrt{3}}{2}."
Comments
Leave a comment