Question #117237
Express the roots of the equation z 3 − α 3 = 0 in terms of α and w, where w is a complex cube root of unity. Use your answer to find the roots of the following equations in the form a + ib. (a) z 3 − 27 = 0 (b) z 3 + 8 = 0 (c) z 3 − i = 0.
1
Expert's answer
2020-06-04T19:04:24-0400

Solution.

z3α3=0;z3 −α3 =0;

z3α3=(zα)(z2+αz+α2);z^3-\alpha^3=(z-\alpha)(z^2+\alpha z+\alpha^2);

(zα)(z2+αz+α2)=0;(z-\alpha)(z^2+\alpha z+\alpha^2)=0;

zα=0orz2+αz+α2=0;z−α=0 orz^2+\alpha z+\alpha^2=0;

z1=α;z_1=\alpha; D=α24α2=3α2D=\alpha^2-4\alpha^2=3\alpha^2 ;

z2=α+3α22=α1+i32;z_2=\dfrac{-\alpha+\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1+i\sqrt{3}}{2};

z3=α3α22=α1i32;z_3=\dfrac{-\alpha-\sqrt{3\alpha^2}}{2}=\alpha \dfrac{-1-i\sqrt{3}}{2};


Cube Root of Unity Value:

ω1=1real;ω1 ​=1 - real;

ω2=1+i32\omega_2= \dfrac{-1+i\sqrt{3}}{2} - complex;

ω3=1i32\omega_3= \dfrac{-1-i\sqrt{3}}{2} - complex;

z1=αω1=α1=α;​z_1=\alpha\sdot\omega_1=\alpha\sdot1=\alpha;

z2=αω2=α1+i32=12α+iα32;z_2=\alpha\sdot\omega_2=\alpha \dfrac{-1+i\sqrt{3}}{2}=-\dfrac{1}{2}\alpha+i\dfrac{\alpha\sqrt{3}}{2};

z3=12αiα32;z_3=-\dfrac{1}{2}\alpha-i\dfrac{\alpha\sqrt{3}}{2};

a) z327=0;z^3-27=0;

z1=3;z_1=3;

z2=123+i332=32+i332;z_2=-\dfrac{1}{2}\sdot3+i\dfrac{3\sqrt{3}}{2}=-\dfrac{3}{2}+i\dfrac{3\sqrt{3}}{2};

z3=123i332=32i332;z_3=-\dfrac{1}{2}\sdot3-i\dfrac{3\sqrt{3}}{2}=-\dfrac{3}{2}-i\dfrac{3\sqrt{3}}{2};

b)z3+8=0;z^3+8=0;

z1=2;z_1=-2;

z2=12(2)+i232=32i232;z_2=-\dfrac{1}{2}\sdot(-2)+i\dfrac{-2\sqrt{3}}{2}=-\dfrac{3}{2}-i\dfrac{2\sqrt{3}}{2};

z3=12(2)i232=32+i232;z_3=-\dfrac{1}{2}\sdot(-2)-i\dfrac{-2\sqrt{3}}{2}=-\dfrac{3}{2}+i\dfrac{2\sqrt{3}}{2};

c)z3i=0;z^3-i=0;

z1=i;z_1=i;

z2=12i+ii32=12i32;z_2=-\dfrac{1}{2}i+i\dfrac{i\sqrt{3}}{2}=-\dfrac{1}{2}i-\dfrac{\sqrt{3}}{2};

z3=12iii32=12i+32;z_3=-\dfrac{1}{2}i-i\dfrac{i\sqrt{3}}{2}=-\dfrac{1}{2}i+\dfrac{\sqrt{3}}{2};


Answer: a) z1=3;z_1=3;

z2=32+i332;z_2=-\dfrac{3}{2}+i\dfrac{3\sqrt{3}}{2};

z3=32i332;z_3=-\dfrac{3}{2}-i\dfrac{3\sqrt{3}}{2};

b)z1=2;z_1=-2;

z2=32i232;z_2=-\dfrac{3}{2}-i\dfrac{2\sqrt{3}}{2};

z3=32+i232;z_3=-\dfrac{3}{2}+i\dfrac{2\sqrt{3}}{2};

c)z1=i;z_1=i;

z2=12i32;z_2=-\dfrac{1}{2}i-\dfrac{\sqrt{3}}{2};

z3=12i+32.z_3=-\dfrac{1}{2}i+\dfrac{\sqrt{3}}{2}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS