The formula for modulus (r) and principal argument (θ ) of a complex number (z = x + iy) is :
r = ∣z∣ = x 2 + y 2 \sqrt{\smash[b]{x² + y²}} x 2 + y 2
θ = arctan(y/x)
(a) z = 3 - 4i
Modulus, r = 3 2 + ( − 4 ) 2 \sqrt{\smash[b]{3² + (-4)²}} 3 2 + ( − 4 ) 2
r = 9 + 16 \sqrt{\smash[b]{9 + 16}} 9 + 16 = 25 \sqrt{\smash[b]{25}} 25
∴ r = 5
Principal argument, θ = arctan(-4/3)
∴ θ = -53.13°
(b) z = -2 + i
Modulus, r = ( − 2 ) 2 + ( 1 ) 2 \sqrt{\smash[b]{(-2)² + (1)²}} ( − 2 ) 2 + ( 1 ) 2
r = 4 + 1 \sqrt{\smash[b]{4 + 1}} 4 + 1
∴ r = 5 \sqrt{\smash[b]{5}} 5
Principal argument, θ = arctan(1/(-2))
θ =−26.56°
Since the given complex number lies in the second quadrant,
Therefore, θ =(−26.56+180)°
∴θ =153.44°
(c) z = 1 / ( 1 + i 3 ) 1/(1 + i\sqrt{\smash[b]{3}}) 1/ ( 1 + i 3 )
z = ( 1 − i 3 ) / ( ( 1 + i 3 ) ( 1 − i 3 ) ) z = (1 - i\sqrt{\smash[b]{3}})/((1 + i\sqrt{\smash[b]{3}})(1 - i\sqrt{\smash[b]{3}})) z = ( 1 − i 3 ) / (( 1 + i 3 ) ( 1 − i 3 ))
z = ( 1 − i 3 ) / ( 1 2 − ( i 3 ) 2 ) z = (1 - i\sqrt{\smash[b]{3}})/(1² - (i\sqrt{\smash[b]{3}})²) z = ( 1 − i 3 ) / ( 1 2 − ( i 3 ) 2 )
z = ( 1 − i 3 ) / ( 1 + 9 ) z = (1 - i\sqrt{\smash[b]{3}})/(1 + 9) z = ( 1 − i 3 ) / ( 1 + 9 )
z = ( 1 − i 3 ) / 10 z = (1 - i\sqrt{\smash[b]{3}})/10 z = ( 1 − i 3 ) /10
z = ( 1 / 10 ) − i ( 3 / 10 ) z = (1/10) - i(\sqrt{\smash[b]{3}}/10) z = ( 1/10 ) − i ( 3 /10 )
Modulus, r =( 1 / 10 ) 2 + ( 3 / 10 ) 2 \sqrt{\smash[b]{(1/10)² + (\sqrt{\smash[b]{3}}/10)²}} ( 1/10 ) 2 + ( 3 /10 ) 2
r = ( 4 / 100 ) r = \sqrt{\smash[b]{(4/100)}} r = ( 4/100 )
∴ r = (2/10)
Principal argument, θ = arctan(-( 3 / 10 ) / ( 1 / 10 ) (\sqrt{\smash[b]{3}}/10)/(1/10) ( 3 /10 ) / ( 1/10 ) )
θ =arctan ( − 3 ) (- \sqrt{\smash[b]{3}}) ( − 3 )
θ =−(π /3)
∴ θ =−60°
(d) z = (7 − i)/(-4 - 3i)
z = ((7 - i)(-4 + 3i))/((-4 - 3i)(-4 + 3i))
z = (-28 + 21i +4i + 3)/((-4)² - (3i)²)
z = (-25 + 25i)/(16 + 9)
z = (-25 + 25i)/25
z = -1 + i
Modulus, r =( − 1 ) 2 + 1 2 \sqrt{\smash[b]{(-1)² + 1²}} ( − 1 ) 2 + 1 2
r =1 + 1 \sqrt{\smash[b]{1 + 1}} 1 + 1
∴r =2 \sqrt{\smash[b]{2}} 2
Principal argument, θ = arctan(1/(-1))
θ = arctan(-1)
θ = -45°
Since the given complex number lies in the second quadrant,
Therefore, θ =(−45+180)°
∴θ =135°
(e) z = 5(cos (π /3)+isin (π /3))
z= 5cos (π /3)+i 5sin (π /3)
Modulus, r =( 5 c o s ( π / 3 ) ) 2 + ( 5 s i n ( π / 3 ) ) 2 \sqrt{\smash[b]{(5cos(π/3))² + (5sin(π/3))²}} ( 5 cos ( π /3 ) ) 2 + ( 5 s in ( π /3 ) ) 2
r = 5 2 ( c o s 2 ( π / 3 ) + s i n 2 ( π / 3 ) ) \sqrt{\smash[b]{5²(cos²(π/3)+sin²(π/3))}} 5 2 ( co s 2 ( π /3 ) + s i n 2 ( π /3 ))
r = 5 1 \sqrt{\smash[b]{1}} 1
∴ r = 5
Principal argument, θ = arctan(5sin(π/3)/5cos(π/3))
θ = arctan(tan(π/3))
θ = π /3
∴θ = 60°
(f) z = cos 2π/3 − sin 2π/3
z = (-1/2) -( 3 / 2 ) (\sqrt{\smash[b]{3}}/2) ( 3 /2 )
z = − ( 1 + 3 ) / 2 z = - (1 + \sqrt{\smash[b]{3}})/2 z = − ( 1 + 3 ) /2
Modulus, r =( c o s ( 2 π / 3 ) − s i n ( 2 π / 3 ) ) 2 + 0 \sqrt{\smash[b]{(cos(2π/3) - sin(2π/3))² + 0}} ( cos ( 2 π /3 ) − s in ( 2 π /3 ) ) 2 + 0
r = ( c o s 2 ( 2 π / 3 ) + s i n 2 ( 2 π / 3 ) − 2 s i n ( 2 π / 3 ) c o s ( 2 π / 3 ) r = \sqrt{\smash[b]{(cos²(2π/3) + sin²(2π/3) - 2sin(2π/3)cos(2π/3)}} r = ( co s 2 ( 2 π /3 ) + s i n 2 ( 2 π /3 ) − 2 s in ( 2 π /3 ) cos ( 2 π /3 )
r = ( 1 − s i n ( 4 π / 3 ) ) r = \sqrt{\smash[b]{(1 - sin(4π/3))}} r = ( 1 − s in ( 4 π /3 ))
r = ( 1 + ( 3 / 2 ) ) r = \sqrt{\smash[b]{(1 + (\sqrt{\smash[b]{3}}/2)) }} r = ( 1 + ( 3 /2 ))
∴ r =( 2 + 3 ) / 2 ) \sqrt{\smash[b]{(2 + \sqrt{\smash[b]{3}})/2) }} ( 2 + 3 ) /2 )
Principal argument, θ = arctan(0/(cos(2π/3) - sin(2π/3)))
θ =arctan (0)
Since the given complex number lies in the second quadrant,
Therefore, θ =(0+180)°
∴θ =180°
Comments