The formula for modulus (r) and principal argument (θ) of a complex number (z = x + iy) is :
r = ∣z∣ = "\\sqrt{\\smash[b]{x\u00b2 + y\u00b2}}"
θ = arctan(y/x)
(a) z = 3 - 4i
Modulus, r = "\\sqrt{\\smash[b]{3\u00b2 + (-4)\u00b2}}"
r = "\\sqrt{\\smash[b]{9 + 16}}" = "\\sqrt{\\smash[b]{25}}"
∴ r = 5
Principal argument, θ = arctan(-4/3)
∴ θ = -53.13°
(b) z = -2 + i
Modulus, r = "\\sqrt{\\smash[b]{(-2)\u00b2 + (1)\u00b2}}"
r = "\\sqrt{\\smash[b]{4 + 1}}"
∴ r = "\\sqrt{\\smash[b]{5}}"
Principal argument, θ = arctan(1/(-2))
θ=−26.56°
Since the given complex number lies in the second quadrant,
Therefore, θ=(−26.56+180)°
∴θ=153.44°
(c) z = "1\/(1 + i\\sqrt{\\smash[b]{3}})"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/((1 + i\\sqrt{\\smash[b]{3}})(1 - i\\sqrt{\\smash[b]{3}}))"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1\u00b2 - (i\\sqrt{\\smash[b]{3}})\u00b2)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1 + 9)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/10"
"z = (1\/10) - i(\\sqrt{\\smash[b]{3}}\/10)"
Modulus, r ="\\sqrt{\\smash[b]{(1\/10)\u00b2 + (\\sqrt{\\smash[b]{3}}\/10)\u00b2}}"
"r = \\sqrt{\\smash[b]{(4\/100)}}"
∴ r = (2/10)
Principal argument, θ = arctan(-"(\\sqrt{\\smash[b]{3}}\/10)\/(1\/10)")
θ=arctan"(- \\sqrt{\\smash[b]{3}})"
θ=−(π/3)
∴ θ=−60°
(d) z = (7 − i)/(-4 - 3i)
z = ((7 - i)(-4 + 3i))/((-4 - 3i)(-4 + 3i))
z = (-28 + 21i +4i + 3)/((-4)² - (3i)²)
z = (-25 + 25i)/(16 + 9)
z = (-25 + 25i)/25
z = -1 + i
Modulus, r ="\\sqrt{\\smash[b]{(-1)\u00b2 + 1\u00b2}}"
r ="\\sqrt{\\smash[b]{1 + 1}}"
∴r="\\sqrt{\\smash[b]{2}}"
Principal argument, θ = arctan(1/(-1))
θ = arctan(-1)
θ = -45°
Since the given complex number lies in the second quadrant,
Therefore, θ=(−45+180)°
∴θ=135°
(e) z = 5(cos(π/3)+isin(π/3))
z= 5cos(π/3)+i5sin(π/3)
Modulus, r ="\\sqrt{\\smash[b]{(5cos(\u03c0\/3))\u00b2 + (5sin(\u03c0\/3))\u00b2}}"
r = "\\sqrt{\\smash[b]{5\u00b2(cos\u00b2(\u03c0\/3)+sin\u00b2(\u03c0\/3))}}"
r = 5 "\\sqrt{\\smash[b]{1}}"
∴ r = 5
Principal argument, θ = arctan(5sin(π/3)/5cos(π/3))
θ = arctan(tan(π/3))
θ = π/3
∴θ = 60°
(f) z = cos 2π/3 − sin 2π/3
z = (-1/2) -"(\\sqrt{\\smash[b]{3}}\/2)"
"z = - (1 + \\sqrt{\\smash[b]{3}})\/2"
Modulus, r ="\\sqrt{\\smash[b]{(cos(2\u03c0\/3) - sin(2\u03c0\/3))\u00b2 + 0}}"
"r = \\sqrt{\\smash[b]{(cos\u00b2(2\u03c0\/3) + sin\u00b2(2\u03c0\/3) - 2sin(2\u03c0\/3)cos(2\u03c0\/3)}}"
"r = \\sqrt{\\smash[b]{(1 - sin(4\u03c0\/3))}}"
"r = \\sqrt{\\smash[b]{(1 + (\\sqrt{\\smash[b]{3}}\/2)) }}"
∴ r ="\\sqrt{\\smash[b]{(2 + \\sqrt{\\smash[b]{3}})\/2) }}"
Principal argument, θ = arctan(0/(cos(2π/3) - sin(2π/3)))
θ=arctan(0)
Since the given complex number lies in the second quadrant,
Therefore, θ=(0+180)°
∴θ=180°
Comments
Leave a comment