"\\overrightarrow{E}(x,t)=E(x,t)\\overrightarrow{j}"
"\\overrightarrow{B}(x,t)=B(x,t)\\overrightarrow{k}"
"\\nabla \\cdot \\overrightarrow{E}=0"
"\\nabla \\cdot \\overrightarrow{B}=0"
"\\nabla \\times \\overrightarrow{E}=-\\frac{d\\overrightarrow{B}}{dt}"
"\\nabla \\times \\overrightarrow{B}=\\mu_0 \\epsilon_0\\frac{d\\overrightarrow{E}}{dt}"
"\\nabla \\times E(x,t)\\overrightarrow{j}=\\frac{dE}{dx}\\overrightarrow{k}"
"\\frac{dE}{dx}=-\\frac{dB}{dt}"
"\\frac{d^2B}{dx^2}=-\\frac{d}{dx}(\\mu_0\\epsilon_0\\frac{dE}{dt})=-\\mu_0\\epsilon_0\\frac{d}{dt}\\frac{dE}{dx}=\\mu_0\\epsilon_0\\frac{d}{dt}\\frac{dB}{dt}=\\mu_0\\epsilon_0\\frac{d^2B}{dt^2}"
So, we have
"\\frac{d^2B}{dx^2}=\\mu_0\\epsilon_0\\frac{d^2B}{dt^2}"
The general wave equation for a wave "\\psi(x,t)" traveling in the "x" direction with speed "v"
"\\frac{d^2\\psi}{dx^2}=\\frac{1}{v^2}\\frac{d^2\\psi}{dt^2}"
So,
"\\mu_0\\epsilon_0=\\frac{1}{v^2}\\to c=v=\\frac{1}{\\sqrt{\\mu_0\\epsilon_0}}=2.997\\cdot10^8 m\/s"
Comments
Leave a comment