In Young's double slit experiment for maximum
dsinα=nλd\sin \alpha=n\lambdadsinα=nλ
where d is the separation between the slits.
For small α\alphaα
sinα≈tanα≈α\sin\alpha\approx \tan\alpha \approx\alphasinα≈tanα≈α
We have (for n=1n=1n=1 )
x⋅sinα=λx\cdot\sin \alpha=\lambdax⋅sinα=λ
sinα≈dL\sin\alpha\approx \frac{d}{L}sinα≈Ld
x⋅dL=λ→d=L⋅λx=0.5⋅580⋅10−90.3⋅10−3=967⋅10−6m=0.967mm.x\cdot \frac{d}{L}=\lambda \to d=\frac{L\cdot \lambda}{x}=\frac{0.5\cdot 580\cdot 10^{-9}}{0.3\cdot 10^{-3}}=967\cdot 10^{-6}m=0.967 mm.x⋅Ld=λ→d=xL⋅λ=0.3⋅10−30.5⋅580⋅10−9=967⋅10−6m=0.967mm.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments