Question #177272

A golf ball with mass 45.90 g and diameter 42.60 mm is struck such that it moves with a speed of 51.85 ⁄ and rotates with a frequency of 2857rpm. What is the kinetic energy of the golf ball?


1
Expert's answer
2021-03-31T16:14:13-0400

The kinetic energy of the golf ball can be found as follows:


KE=KEtranslational+KErotational.KE=KE_{translational}+KE_{rotational}.

We can find the translational kinetic energy of the golf ball as follows:


KEtranslational=12mv2,KE_{translational}=\dfrac{1}{2}mv^2,KEtranslational=120.0459 kg(51.85 ms)2=61.7 J.KE_{translational}=\dfrac{1}{2}\cdot0.0459\ kg\cdot(51.85\ \dfrac{m}{s})^2=61.7\ J.

We can find the rotational kinetic energy as follows:


KErotational=12Iω2=1225mr2ω2,KE_{rotational}=\dfrac{1}{2}I\omega^2=\dfrac{1}{2}\cdot\dfrac{2}{5}\cdot mr^2\omega^2,

KErotational=150.0459 kg(0.0213 m)2(2857 revmin1 min60 s2π rad)2,KE_{rotational}=\dfrac{1}{5}\cdot0.0459\ kg\cdot(0.0213\ m)^2\cdot(2857\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot2\pi\ rad)^2,


KErotational=0.372 J.KE_{rotational}=0.372\ J.

Then, we can calculate the kinetic energy of the golf ball:


KE=KEtranslational+KErotational=61.7 J+0.372 J=62.1 J.KE=KE_{translational}+KE_{rotational}=61.7\ J+0.372\ J=62.1\ J.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS