Question #176675

Location of the center of mass x0 = 50.0 cm

Two masses are to be suspended from the meter stick. Given the position of the first mass, calculate the position of the second mass such that the system is in equilibrium.

Case 1:

m1 = 50.0 g 

x1 = 25.0 cm 

d1 = |x1-x0| = 

 τccw = 

m2 = 35.0 g 

d2 = 

x2 = 

τcw = 


Case 2:


m1 = 50.0 g 

x1 = 15.0 cm

d1 = |x1-x0| = 

τccw = 

m2 = 125.0 g

d2 = 

x2 = 

τcw = 


Case 3:


m1 = 100.0 g 

x1 = 45.0 cm

d1 = |x1-x0| = 

τccw = 

m2 = 

x2 = 70.0 cm

d2 = |x2-x0| =

τcw =


Case 4: 


m1 = 120.0 g 

x1 = 40.0 cm

d1 = |x1-x0| = 

m2 = 50.0 g 

x2 = 90.0 cm 

d2 = |x2-x0| = 

m3 = 50.0 g 

d3 = 

x3 = 

τccw = 

τcw = 



1
Expert's answer
2021-03-31T07:16:22-0400

1)


d1=25 cmτccw=0.25(9.8)(0.05)=0.1225 Nmτcw=0.1225 Nmd2=0.12259.80.035=0.357 m=35.7 cmx2=85.7 cmd_1=25\ cm\\\tau_{ccw}=0.25(9.8)(0.05)=0.1225\ Nm\\\\\tau_{cw}=0.1225\ Nm\\d_2=\frac{0.1225}{9.8\cdot0.035}=0.357\ m=35.7\ cm\\x_2=85.7\ cm

2)


d1=35 cmτccw=0.35(9.8)(0.05)=0.1715 Nmτcw=0.1715 Nmd2=0.17159.80.125=0.14 m=14 cmx2=64 cmd_1=35\ cm\\\tau_{ccw}=0.35(9.8)(0.05)=0.1715\ Nm\\\\\tau_{cw}=0.1715\ Nm\\d_2=\frac{0.1715}{9.8\cdot0.125}=0.14\ m=14\ cm\\x_2=64\ cm

3)


d1=5 cmτccw=0.05(9.8)(0.1)=0.049 Nmτcw=0.049 Nmd2=0.0499.80.07=0.071 m=7.1 cmx2=57.1 cmd_1=5\ cm\\\tau_{ccw}=0.05(9.8)(0.1)=0.049\ Nm\\\\\tau_{cw}=0.049\ Nm\\d_2=\frac{0.049}{9.8\cdot0.07}=0.071\ m=7.1\ cm\\x_2=57.1\ cm

4)


d1=10 cm,d2=40 cm,τccw=0.1(9.8)(0.12)=0.1176 Nmτcw=0.4(9.8)(0.05)=0.196 Nmd3=0.1960.11769.80.05=0.16 m=16 cmx3=34 cmd_1=10\ cm,d_2=40\ cm,\\\tau_{ccw}=0.1(9.8)(0.12)=0.1176\ Nm\\\\\tau_{cw}=0.4(9.8)(0.05)=0.196\ Nm\\d_3=\frac{0.196-0.1176}{9.8\cdot0.05}=0.16\ m=16\ cm\\x_3=34\ cm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS