Using Gauss’ theorem, calculate the flux of the vector field A--> = x³î + x²zĵ + yzk̂
through the surface of a cube of side 2 units.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\text{Flux}&=\\small \\int_s \\bold{F}d\\bold{S}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\int_s\\bold{F}\\bold{dS}&= \\small \\iiint_v div \\bold{F}.dv\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small div\\bold{A}&= \\small \\nabla\\bold{A}\\\\\n&=\\bigg(i\\frac{\\partial}{\\partial x}+j\\frac{\\partial}{\\partial y}+k\\frac{\\partial}{\\partial z}\\bigg).(x^3i+x^2j+yzk)\\\\\n&=\\small \\frac{\\partial(x^3)}{\\partial x}+\\frac{\\partial(x^2z)}{\\partial y}+\\frac{\\partial(yz)}{\\partial z}\\\\\n&= \\small 3x^2+0+y\\\\\n&=\\small 3x^2+y\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\text{Flux}&= \\small \\iiint(3x^2+y)dxdydz\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n &=\\small \\iint dxdy \\int_0^2 (3x^2+y) dz\\\\\n&= \\small \\iint dxdy (3x^2z+yz\\big|_0^2\\\\\n&=\\small \\int dx \\int_0^2 (6x^2+2y)dy\\\\\n&=\\small \\int dx(6x^2y+y^2\\big|_0^2\\\\\n&=\\small \\int_0^2 (12x^2+4)dx\\\\\n&=\\small (4x^3+4x\\Big|_0^2\\\\\n\\small \\text{Flux}&=\\small \\bold{40}\n\\end{aligned}"
Comments
Leave a comment