Determine the direction of maximum increase of the scalar field
f(x,y,z) = xey + z2
at the point O(1,ln2,3)
The direction of maximum increase of scalar field is defined by it's gradient :
"\\vec\\nabla f=\\begin{pmatrix} \\frac{\\partial}{\\partial x}f \\\\ \\frac{\\partial}{\\partial y}f \\\\ \\frac{\\partial}{\\partial z}f \\end{pmatrix}"
Let's calculate it :
"\\vec\\nabla f=\\begin{pmatrix} e^y \\\\ xe^y \\\\ 2z \\end{pmatrix}"
Therefore the gradient at the point O is :
"\\vec\\nabla f(O) = \\begin{pmatrix} 2 \\\\ 2 \\\\ 6 \\end{pmatrix}"
This vector defines the diretion of the fastest growth of f at the point O.
Comments
Leave a comment