We project all the forces acting on the body on the coordinate axis and write down the laws of motion in projection on these axes:
"N+F \\cdot sin{\\alpha}-m \\cdot g=0" (1)
"F \\cdot cos{\\alpha} -F_fr=m \\cdot a" (2)
The sliding friction force is determined by the formula:
"F_fr=\\mu\\cdot N" (3)
From expression (2) we express the friction force
"F_fr=F \\cdot cos{\\alpha} -m \\cdot a"
From expression (1) we express the force N
"N=m \\cdot g-F \\cdot sin{\\alpha}"
substitute in (3)
"F \\cdot cos{\\alpha} -m \\cdot a=\\mu\\cdot (m \\cdot g-F \\cdot sin{\\alpha})"
express acceleration
"a=\\frac{F \\cdot cos{(\\alpha)}-\\mu\\cdot (m \\cdot g-F \\cdot sin{(\\alpha)})}{m}"
"a=\\frac{188 \\cdot cos({32.5^0})-0.15\\cdot (25.7\\cdot 9.81-188 \\cdot sin({32.5^0}))}{25.7}=5.288m\/s^2"
Comments
Leave a comment