Question #105275
Obtain the directional derivative for a scalar field (x,y,z)=3x^2y-y^3z^2 at the point (1,-2,-1) in the direction i+j+k
1
Expert's answer
2020-03-16T13:04:26-0400

Find the gradient at the point (1,2,1)(1,-2,-1)


Φx=6xy=6(2)1=12\frac{\partial\Phi}{\partial x}=6xy=6\cdot(-2)\cdot1=-12


Φy=3x23y2z2=3123(2)2(1)2=9\frac{\partial\Phi}{\partial y}=3x^2-3y^2z^2=3\cdot 1^2-3 \cdot(-2)^2 \cdot (-1)^2=-9


Φz=2y3z=2(2)3(1)=16\frac{\partial\Phi}{\partial z}=-2y^3z=-2\cdot(-2)^3\cdot(-1)=16


Φ(1,2,1)=12i9j+16k=(12,9,16)\nabla \Phi(1,-2,-1)=-12\overrightarrow{i}-9\overrightarrow{j}+16\overrightarrow{k}=(-12,-9,16)


Let u=u1i+u2j+u3k\overrightarrow{u}=u_1\overrightarrow{i}+u_2\overrightarrow{j}+u_3\overrightarrow{k} be a unit vector. The directional derivative at (1,2,1)(1,-2,-1) in the direction of u\overrightarrow{u} is


DuΦ(1,2,1)=Φ(1,2,1)u=D_u\Phi(1,-2,-1)=\nabla\Phi(1,-2,-1)\cdot \overrightarrow{u}=


=(12i9j+16k)(u1i+u2j+u3k)==(-12\overrightarrow{i}-9\overrightarrow{j}+16\overrightarrow{k})(u_1\overrightarrow{i}+u_2\overrightarrow{j}+u_3\overrightarrow{k})=


=12u19u2+16u3=-12u_1-9u_2+16u_3


To find the directional derivative in the direction of the vector (1,1,1)(1,1,1) , we need to find a unit vector in the direction of the vector (1,1,1)(1,1,1) . We simply divide by the magnitude of (1,1,1)(1,1,1).


u=(1,1,1)(1,1,1)=(1,1,1)12+12+12=(1,1,1)3=(13,13,13)\overrightarrow{u}=\frac{(1,1,1)}{\lvert\lvert(1,1,1)\rvert\rvert}=\frac{(1,1,1)}{\sqrt{1^2+1^2+1^2}}=\frac{(1,1,1)}{\sqrt{3}}=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})


So,


DuΦ(1,2,1)=12u19u2+16u3=D_u\Phi(1,-2,-1)=-12u_1-9u_2+16u_3=


=1213913+1613=53=-12\frac{1}{\sqrt{3}}-9\frac{1}{\sqrt{3}}+16\frac{1}{\sqrt{3}}=-\frac{5}{\sqrt{3}} Answer



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Sonu singh
04.10.20, 09:55

Answer is incorrect, the right answer is -37/√3,

LATEST TUTORIALS
APPROVED BY CLIENTS