Question #104795
[img]https://upload.cc/i1/2020/03/06/7mitHn.jpg[/img]



R is 4 in the question
1
Expert's answer
2020-03-10T11:24:35-0400

As per the given question,

Charge on the thicker part of the ring=+20μC= +20\mu C

Radius is =R+3

Charge on the thinner part of the ring =40μC=-40\mu C

Radius = R+2

ϵo=8.85×1012C2/Nm2\epsilon_o=8.85\times 10^{-12} C^2/N-m^2

Let arc dx is making dθd\theta at the origin,



Let the electric field due to the thicker charged ring is E1E_1 and due to the thinner part is E2E_2

dq=20dxπ2(R+3)=40dxπ(R+3)dq= \dfrac{20dx}{\dfrac{\pi}{2}(R+3)}=\dfrac{40 dx}{\pi(R+3)}

dE1=dq4π2ϵo(R+3)2=40dx4π2ϵo(R+3)3dE_1=\dfrac{dq}{4\pi^2 \epsilon_o (R+3)^2}=\dfrac{40dx}{4\pi^2\epsilon_o (R+3)^3}

dE1=40(R+3)dθ4π2ϵo(R+3)3\Rightarrow dE_1=\dfrac{40(R+3)d\theta}{4\pi^2 \epsilon_o(R+3)^3}

Now taking integration of both side 0EdE1=ππ/240(R+3)dθ4π2ϵo(R+3)3\int^{E}_{0} dE_1=\int^{\pi/2}_{\pi}\dfrac{40(R+3)d\theta}{4\pi^2 \epsilon_o(R+3)^3}


0EdE1=ππ/240dθ4π2ϵo(R+3)2=5πϵo(R+3)2\int^{E}_{0} dE_1=\int^{\pi/2}_{\pi}\dfrac{40d\theta}{4\pi^2\epsilon_o (R+3)^2}=\dfrac{5}{\pi\epsilon_o(R+3)^2} (i^j^)(\hat{i}-\hat{j})

Similarly for the thinner arc

0E2dE2=ππ/240dθ4π2(R+2)2=10πϵo(R+2)2\int^{E_2}_{0} dE_2=\int^{\pi/2}_{\pi}\dfrac{40d\theta}{4\pi^2 (R+2)^2}=\dfrac{10}{\pi\epsilon_o(R+2)^2}

E2=10π(ϵo(R+2)2)(i^)E_2=\dfrac{10}{\pi(\epsilon_o(R+2)^2)}(\hat{i})

Hence the resultant electric field,

Enet=(5πϵo(R+3)2+10π(ϵo(R+2)2))(i^)5πϵo(R+3)2j^E_{net}=(\dfrac{5}{\pi\epsilon_o(R+3)^2}+\dfrac{10}{\pi(\epsilon_o(R+2)^2)})(\hat{i}) -\dfrac{5}{\pi\epsilon_o(R+3)^2}\hat{j}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS