As per the given question,
Charge on the thicker part of the ring"= +20\\mu C"
Radius is =R+3
Charge on the thinner part of the ring "=-40\\mu C"
Radius = R+2
"\\epsilon_o=8.85\\times 10^{-12} C^2\/N-m^2"
Let arc dx is making "d\\theta" at the origin,
Let the electric field due to the thicker charged ring is "E_1" and due to the thinner part is "E_2"
"dq= \\dfrac{20dx}{\\dfrac{\\pi}{2}(R+3)}=\\dfrac{40 dx}{\\pi(R+3)}"
"dE_1=\\dfrac{dq}{4\\pi^2 \\epsilon_o (R+3)^2}=\\dfrac{40dx}{4\\pi^2\\epsilon_o (R+3)^3}"
"\\Rightarrow dE_1=\\dfrac{40(R+3)d\\theta}{4\\pi^2 \\epsilon_o(R+3)^3}"
Now taking integration of both side "\\int^{E}_{0} dE_1=\\int^{\\pi\/2}_{\\pi}\\dfrac{40(R+3)d\\theta}{4\\pi^2 \\epsilon_o(R+3)^3}"
"\\int^{E}_{0} dE_1=\\int^{\\pi\/2}_{\\pi}\\dfrac{40d\\theta}{4\\pi^2\\epsilon_o (R+3)^2}=\\dfrac{5}{\\pi\\epsilon_o(R+3)^2}" "(\\hat{i}-\\hat{j})"
Similarly for the thinner arc
"\\int^{E_2}_{0} dE_2=\\int^{\\pi\/2}_{\\pi}\\dfrac{40d\\theta}{4\\pi^2 (R+2)^2}=\\dfrac{10}{\\pi\\epsilon_o(R+2)^2}"
"E_2=\\dfrac{10}{\\pi(\\epsilon_o(R+2)^2)}(\\hat{i})"
Hence the resultant electric field,
"E_{net}=(\\dfrac{5}{\\pi\\epsilon_o(R+3)^2}+\\dfrac{10}{\\pi(\\epsilon_o(R+2)^2)})(\\hat{i}) -\\dfrac{5}{\\pi\\epsilon_o(R+3)^2}\\hat{j}"
Comments
Leave a comment