Question #104707
Obtain the directional derivative for a scalar field Φ(X,y,z) =3x²y-y³z² at the point (1,-2,-1) in the direction i+j+k
1
Expert's answer
2020-03-09T10:55:33-0400

At first, find the gradient at the point (1,2,1)(1,-2,-1)


Φx=6yx=6(2)1=12\frac{\partial \Phi}{\partial x}=6yx=6\cdot(-2)\cdot1=-12


Φy=3x23y2z2=3123(2)2(1)2=9\frac{\partial \Phi}{\partial y}=3x^2-3y^2z^2=3\cdot 1^2-3\cdot (-2)^2\cdot (-1)^2=-9


Φz=2y3z=2(2)3(1)=16\frac{\partial \Phi}{\partial z}=-2y^3z=-2\cdot (-2)^3\cdot (-1)=16


Φ(1,2,1)=12i9j+16z=(12,9,16)\nabla \Phi(1,-2,-1)=-12\overrightarrow{i}-9\overrightarrow{j}+16\overrightarrow{z}=(-12,-9,16)


Let u=u1i+u2j+u3k\overrightarrow{u}=u_1\overrightarrow{i}+u_2\overrightarrow{j}+u_3\overrightarrow{k} be a unit vector. The directional derivative at (1,-2,-1) in the direction of u\overrightarrow{u} is


DuΦ(1,2,1)=Φ(1,2,1)u=D_u\Phi(1,-2,-1)=\nabla\Phi(1,-2,-1)\cdot \overrightarrow{u}=


=(12i9j+16z)(u1i+u2j+u3k)==(-12\overrightarrow{i}-9\overrightarrow{j}+16\overrightarrow{z})(u_1\overrightarrow{i}+u_2\overrightarrow{j}+u_3\overrightarrow{k})=


=12u19u2+16u3=-12u_1-9u_2+16u_3


To find the directional derivative in the direction of the vector (1,1,1), we need to find a unit vector in the direction of the vector (1,1,1). We simply divide by the magnitude of (1,1,1).


u=(1,1,1)(1,1,1)=(1,1,1)12+12+12=(1,1,1)3=(13,13,13)\overrightarrow{u}=\frac{(1,1,1)}{\|(1,1,1)\|}=\frac{(1,1,1)}{\sqrt{1^2+1^2+1^2}}=\frac{(1,1,1)}{\sqrt{3}}=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})


So, we have


DuΦ(1,2,1)=12u19u2+16u3=D_u\Phi(1,-2,-1)=-12u_1-9u_2+16u_3=


=1213913+1613=53=-12\frac{1}{\sqrt{3}}-9\frac{1}{\sqrt{3}}+16\frac{1}{\sqrt{3}}=-\frac{5}{\sqrt{3}} Answer






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS