At first, find the gradient at the point "(1,-2,-1)"
"\\frac{\\partial \\Phi}{\\partial x}=6yx=6\\cdot(-2)\\cdot1=-12"
"\\frac{\\partial \\Phi}{\\partial y}=3x^2-3y^2z^2=3\\cdot 1^2-3\\cdot (-2)^2\\cdot (-1)^2=-9"
"\\frac{\\partial \\Phi}{\\partial z}=-2y^3z=-2\\cdot (-2)^3\\cdot (-1)=16"
"\\nabla \\Phi(1,-2,-1)=-12\\overrightarrow{i}-9\\overrightarrow{j}+16\\overrightarrow{z}=(-12,-9,16)"
Let "\\overrightarrow{u}=u_1\\overrightarrow{i}+u_2\\overrightarrow{j}+u_3\\overrightarrow{k}" be a unit vector. The directional derivative at (1,-2,-1) in the direction of "\\overrightarrow{u}" is
"D_u\\Phi(1,-2,-1)=\\nabla\\Phi(1,-2,-1)\\cdot \\overrightarrow{u}="
"=(-12\\overrightarrow{i}-9\\overrightarrow{j}+16\\overrightarrow{z})(u_1\\overrightarrow{i}+u_2\\overrightarrow{j}+u_3\\overrightarrow{k})="
"=-12u_1-9u_2+16u_3"
To find the directional derivative in the direction of the vector (1,1,1), we need to find a unit vector in the direction of the vector (1,1,1). We simply divide by the magnitude of (1,1,1).
"\\overrightarrow{u}=\\frac{(1,1,1)}{\\|(1,1,1)\\|}=\\frac{(1,1,1)}{\\sqrt{1^2+1^2+1^2}}=\\frac{(1,1,1)}{\\sqrt{3}}=(\\frac{1}{\\sqrt{3}},\\frac{1}{\\sqrt{3}},\\frac{1}{\\sqrt{3}})"
So, we have
"D_u\\Phi(1,-2,-1)=-12u_1-9u_2+16u_3="
"=-12\\frac{1}{\\sqrt{3}}-9\\frac{1}{\\sqrt{3}}+16\\frac{1}{\\sqrt{3}}=-\\frac{5}{\\sqrt{3}}" Answer
Comments
Leave a comment