Thank you
(1)
Eres=E1R1+E2R2+E3R31R1+1R2+1R3E_{res}=\dfrac{\dfrac{E_1}{R_1}+\dfrac{E_2}{R_2}+\dfrac{E_3}{R_3}}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}}Eres=R11+R21+R31R1E1+R2E2+R3E3
Eres=1.5(1R1+1R2+1R3)(1R1+1R2+1R3)=1.5 VE_{res}=\dfrac{1.5(\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3})}{(\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3})}=1.5\space VEres=(R11+R21+R31)1.5(R11+R21+R31)=1.5 V
(2) 1Rres=1R1+1R2+1R3\dfrac{1}{R_{res}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}Rres1=R11+R21+R31
⇒1Rres=15+12.5+14\Rightarrow \dfrac{1}{R_{res}}=\dfrac{1}{5}+\dfrac{1}{2.5}+\dfrac{1}{4}⇒Rres1=51+2.51+41
⇒Rres=2017=1.17 Ω\Rightarrow R_{res}=\dfrac{20}{17}=1.17\space\Omega⇒Rres=1720=1.17 Ω
(3) Ires=EresRres=1.51.17I_{res}=\dfrac{E_{res}}{R_{res}}=\dfrac{1.5}{1.17}Ires=RresEres=1.171.5
⇒Ires=1.282 A\Rightarrow I_{res}=1.282\space A⇒Ires=1.282 A
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment