Answer to Question #179016 in Electric Circuits for Dylan

Question #179016

a circuit with a 2 cell battery, and a resistor(R1) connected in series. Also 2 resistors in parallel at one point in the circuit(R2 & R3) and another 2 resistors in parallel at another point(R4 & R5). V1 = 4.0V, V2 = 1.5V , I2 = 0.2A , I1 = 0.7A, I4 = 0.3A, and R4 = 70Ω. Find all other voltages, currents, resistances and the totals for the circuit


1
Expert's answer
2021-04-08T09:02:38-0400

Explanations & Calculations


  • Refer to the attached figure.


  1. Since the current through the series resistor R1 represents the total current, then the total current is I=i1=0.7A\small I=i_1 =0.7A
  2. Applying V=iR to R1,

R1=Vi1=4V0.7A=5.7Ω\qquad\qquad \begin{aligned} \small R_1&=\small \frac{V}{i_1}=\frac{4V}{0.7A}=\bold{5.7\Omega} \end{aligned}

3.Applying V=iR\small V=iR to R2,

R2=Vi2=1.5V0.2A=7.5Ω\qquad\qquad \begin{aligned} \small R_2&=\small \frac{V}{i_2}=\frac{1.5V}{0.2A}=\bold{7.5\Omega} \end{aligned}

4.Current flow through R3 is

i3=Ii2=0.70.2=0.5A\qquad\qquad \begin{aligned} \small i_3&=\small I-i_2=0.7-0.2=\bold{0.5A} \end{aligned}

5.Since R2 & R3 are parallel to each other, they experience the same potential drop across them.

Therefore,

V3=V2=1.5V\qquad\qquad \begin{aligned} \small V_3&=\small V_2=\bold{1.5V} \end{aligned}

6.Then applying V=iR\small V=iR to R3,

R3=Vi=1.5V0.5A=3Ω\qquad\qquad \begin{aligned} \small R_3&=\small \frac{V}{i}=\frac{1.5V}{0.5A}=\bold{3\Omega} \end{aligned}

7.Applying V=iR\small V=iR to R4,

V4=iR=0.3A×70Ω=21V\qquad\qquad \begin{aligned} \small V_4 &=\small iR=0.3A\times70\Omega=\bold{21V} \end{aligned}

8.Since R5 is connected in parallel to R4 they both experience the same potential drop. Then,

V5=21V\qquad\qquad \begin{aligned} \small V_5&=\small \bold{21V} \end{aligned}

9.The current through R5 is

i5=0.70.3=0.4A\qquad\qquad \begin{aligned} \small i_5&=\small 0.7-0.3=\bold{0.4A} \end{aligned}

10.Applying V=iR\small V=iR to R5,

R5=Vi=21V0.4A=52.5Ω\qquad\qquad \begin{aligned} \small R_5&=\small \frac{V}{i}=\frac{21V}{0.4A}=\bold{52.5\Omega} \end{aligned}

11.Total voltage provided by the battery hence the potential of the battery.

Vb=4V+1.5V+21V=26.5V\qquad\qquad \begin{aligned} \small V_b&=\small 4V+1.5V+21V=\bold{26.5V} \end{aligned}

12.In case of an equivalent resistance that is external to the circuit,

Re=R1+R2.R3R2+R3+R4.R5R4+R5=5.7+7.5×37.5+3+70×52.570+52.5=5.7+2.14+30=37.84Ω\qquad\qquad \begin{aligned} \small R_e&=\small R_1+\frac{R_2.R_3}{R_2+R_3}+\frac{R_4.R_5}{R_4+R_5}\\ &=\small 5.7+\frac{7.5\times3}{7.5+3}+\frac{70\times52.5}{70+52.5}\\ &=\small 5.7+2.14+30\\ &=\small \bold{37.84\Omega } \end{aligned}

Which can also be calculated by

Re=26.5V0.7A=37.84Ω\qquad\qquad \begin{aligned} \small R_e &=\small \frac{26.5V}{0.7A}=37.84\Omega \end{aligned}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment