Since the angle c is not specified, we take it as 90o. So we have:
1) c=90∘a=49∘23′b=76∘41′ then,
(Q8) cosα=sinβ∗cosA→cosA=cosα/sinβ=cos49∘23′/sin76∘41′
cosA≈0.669→A=arccos(0.669)≈41∘59′24"
(Q5) tanB=tanβ∗sinA=tan(76∘41)∗sin(41∘59′24")
tanB≈2.826→B=arctan(2.826)≈70∘30′40"
(Q10) cosC=−cotα∗cotβ=−cot(76∘41′)∗cot(49∘23′)
cosC≈−0.203→C=arccos(−0.203)≈101∘42′
2) c=90∘B=100∘b=50∘10′ , then
(Q9)cosβ=sinα∗cosB→sinα=cosβ/cosB=cos(50∘10′)/cos(100∘)
sinα≈0.7428→α=arcsin(0.7428)≈47∘58′12"
(Q4) tanA=tanα∗sinB=tan(47∘58′12")∗sin(100∘)
tanA≈1.093→A=arctan(1.093)≈47∘32′24"
(Q1) cosC=−cosA∗cosB→cosC=−cos(47∘32′24")∗cos(100∘)
cosC≈0.1172→C=arccos(0.1172)≈83∘16′12"
3) c=90∘A=121∘20′B=42∘01′ then,
(Q1) cosC=−cosA∗cosB=−cos(121∘20′)∗cos(42∘01′)
cosC≈0.3863→C=arccos(0.38630)≈67∘16′50"
(Q4) tanA=tanα∗sinB→tanα=tanA/sinB=tan(121∘20′)/sin(42∘01′)
tanα≈−2.454→α=arctan(−2.454)≈112∘10′10"
(Q5) tanB=tanβ∗sinA→tanα=tanB/sinA=tan(42∘01′)/sin(121∘20′)
tanβ≈1.055→β=arctan(1.055)≈46∘31′50"
4) c=90∘α=60∘35′B=122∘18′ then,
(Q4) tanA=tanα∗sinB→tanA=tan(60∘35′)∗sin(122∘18′)
tanA≈1.499→A=arctan(1.499)≈56∘17′24"
(Q9) cosβ=sinα∗cosB→cosβ=sin(60∘35′)∗cos(122∘18′)
cosβ≈−0.4655→β=arccos(−0.4655)≈117∘42′
(Q6) tanB=−cosα∗tanC→tanC=−tanB/cosα
tanC≈3.221→C=arctan(3.221)≈72∘45′
Comments
Leave a comment