Answer to Question #139002 in Trigonometry for riz

Question #139002
Solve the following quadrantal spherical triangle.
1.) a= 49° 23' , b = 76° 41'
2.) B = 100° , b = 50° 10'
3.) A = 121° 20' , B = 42° 01'
4.) a = 60° 35' , B = 122° 18'
1
Expert's answer
2020-10-21T17:05:17-0400

Since the angle c is not specified, we take it as 90o. So we have:


1) c=90a=4923b=7641c=90^\circ\quad a= 49^\circ 23'\quad b = 76^\circ 41' then,


(Q8)(Q8) cosα=sinβcosAcosA=cosα/sinβ=cos4923/sin7641\cos \alpha=\sin \beta * \cos A → \cos A = {\cos \alpha}/{\sin\beta} = {\cos 49^\circ 23'}/{\sin76^\circ 41'}


cosA0.669A=arccos(0.669)415924"\cos A≈0.669→ A=\arccos(0.669)≈41^∘ 59^ ′24 ^" ​


(Q5)(Q5) tanB=tanβsinA=tan(7641)sin(415924")\tan B=\tan\beta * \sin A=\tan(76^∘ 41^ )* \sin(41^∘ 59^′ 24 ^" )


tanB2.826B=arctan(2.826)703040"\tan B ≈ 2.826→ B = \arctan(2.826)≈70 ^∘ 30 ^′40 ^" ​


(Q10)(Q10) cosC=cotαcotβ=cot(7641)cot(4923)\cos C= −\cot \alpha * \cot\beta = −\cot(76^ ∘ 41^ ′ ) * \cot(49^ ∘ 23^ ′ )


cosC0.203C=arccos(0.203)10142\cos C ≈ −0.203 → C = \arccos(−0.203)≈101^ ∘ 42^ ′


2) c=90B=100b=5010c=90^\circ\quad B = 100^\circ\quad b = 50^\circ10' , then


(Q9)(Q9)cosβ=sinαcosBsinα=cosβ/cosB=cos(5010)/cos(100)\quad \cos\beta=\sin\alpha * \cos B →\sin\alpha ={\cos\beta} /{\cos B} = {cos(50 ^∘10 ′ )}/{\cos(100 ^∘ )}


sinα0.7428α=arcsin(0.7428)475812"\sin\alpha ≈ 0.7428→ \alpha = \arcsin(0.7428)≈47^ ∘ 58^ ′ 12 ^"


(Q4)(Q4) tanA=tanαsinB=tan(475812")sin(100)\tan A= \tan\alpha * \sin B = \tan(47^ ∘ 58^ ′ 12^") * sin(100^ ∘ )


tanA1.093A=arctan(1.093)473224"\tan A ≈ 1.093 → A = \arctan(1.093)≈47^ ∘ 32^ ′ 24^"


(Q1)(Q1) cosC=cosAcosBcosC=cos(473224")cos(100)\cos C= −\cos A * \cos B→ \cos C=−\cos(47^ ∘ 32^ ′ 24^" ) * \cos(100 ^∘ )


cosC0.1172C=arccos(0.1172)831612"\cos C ≈ 0.1172 → C = \arccos(0.1172 ) ≈ 83^ ∘ 16^ ′12 ^"


3) c=90A=12120B=4201c=90^\circ\quad A = 121^\circ20'\quad B = 42^\circ01' then,


(Q1)(Q1) cosC=cosAcosB=cos(12120)cos(4201)cos C=−cos A * cosB=−cos(121^ ∘ 20^ ′ )*cos(42 ^∘ 01^ ′)


cosC0.3863C=arccos(0.38630)671650"cos C ≈ 0.3863 → C = arccos(0.38630)≈67^ ∘ 16^ ′ 50^"


(Q4)(Q4) tanA=tanαsinBtanα=tanA/sinB=tan(12120)/sin(4201)\tan A=\tan \alpha * \sin B→\tan\alpha = \tan A/\sin B = \tan(121^ ∘ 20^ ′ )/\sin(42^ ∘ 01 ^′ ) ​


tanα2.454α=arctan(2.454)1121010"\tan \alpha≈−2.454 → \alpha =\arctan(−2.454)≈112^ ∘10^ ′10^" ​


(Q5)(Q5) tanB=tanβsinAtanα=tanB/sinA=tan(4201)/sin(12120)\tan B = \tan\beta * \sin A → \tan\alpha =\tan B / \sin A = \tan(42 ^∘ 01^ ′ )/sin(121^ ∘ 20^′ )


tanβ1.055β=arctan(1.055)463150"\tan\beta ≈ 1.055 →\beta = \arctan(1.055)≈46^ ∘ 31^ ′ 50^"


4) c=90α=6035B=12218c=90^\circ\quad \alpha=60^\circ 35^′\quad B=122^\circ 18^′ then,

(Q4)(Q4) tanA=tanαsinBtanA=tan(6035)sin(12218)\tan A = \tan\alpha * \sin B →\tan A = \tan(60^ ∘ 35 ^′ ) * \sin(122^ ∘ 18^ ′ )


tanA1.499A=arctan(1.499)561724"\tan A ≈ 1.499 → A =\arctan(1.499)≈56 ^∘ 17^ ′ 24 ^"


(Q9)(Q9) cosβ=sinαcosBcosβ=sin(6035)cos(12218)\cos\beta = \sin\alpha * \cos B → \cos\beta=\sin(60^ ∘ 35^ ′ ) * \cos(122 ^∘ 18^ ′)


cosβ0.4655β=arccos(0.4655)11742\cos\beta≈−0.4655→ \beta=\arccos(−0.4655)≈117^ ∘42 ^′


(Q6)(Q6) tanB=cosαtanCtanC=tanB/cosα\tan B=−\cos\alpha* \tan C→\tan C=− \tan B/\cos\alpha


tanC3.221C=arctan(3.221)7245\tan C ≈ 3.221 → C = \arctan(3.221)≈72 ^∘ 45^ ′



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment